Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?

A. Christofides, A. Efstratiadis, D. Koutsoyiannis, G.-F. Sargentis, and K. Hadjibiros, Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?, Hydrology and Earth System Sciences, 9 (5), 507–515, doi:10.5194/hess-9-507-2005, 2005.

[doc_id=683]

[English]

The possible water management of the Plastiras Lake, an artificial reservoir in central Greece, is examined. The lake and surrounding landscape are aesthetically degraded when the water level drops, and the requirement of maintaining a high quality of the scenery constitutes one of the several conflicting water uses, the other ones being irrigation, water supply, and power production. This environmental water use, and, to a lesser extent, the requirement for adequate water quality, results in constraining the annual release. Thus, the allowed fluctuation of reservoir stage is not defined by the physical and technical characteristics of the reservoir, but by a multi-criteria decision, the three criteria being maximising water release, ensuring adequate water quality, and maintaining a high quality of the natural landscape. Each of these criteria is analyzed separately. The results are then put together in a multicriterion tableau, which helps understand the implications of the possible alternative decisions. Several conflict resolution methods are overviewed, namely willingness to pay, hedonic prices, and multi-criteria decision analysis. All these methods attempt to quantify non-quantifiable qualities, and it is concluded that they don't necessarily offer any advantage over merely making a choice based on understanding.

PDF Full text (404 KB)

PDF Additional material:

See also: http://dx.doi.org/10.5194/hess-9-507-2005

Remarks:

Permission is granted to reproduce and modify this paper under the terms of the Creative Commons NonCommercial ShareAlike 2.5 license.

Our works referenced by this work:

1. G.-F. Sargentis, The esthetic element in water, hydraulic works and dams, Diploma thesis, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, 1998.
2. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000.
3. K. Hadjibiros, D. Koutsoyiannis, A. Katsiri, A. Stamou, A. Andreadakis, G.-F. Sargentis, A. Christofides, A. Efstratiadis, and A. Valassopoulos, Management of water quality of the Plastiras reservoir, 4th International Conference on Reservoir Limnology and Water Quality, Ceske Budejovice, Czech Republic, doi:10.13140/RG.2.1.4872.4723, 2002.
4. D. Koutsoyiannis, Reliability concepts in reservoir design, Water Encyclopedia, Vol. 4, Surface and Agricultural Water, edited by J. H. Lehr and J. Keeley, 259–265, doi:10.1002/047147844X.sw776, Wiley, New York, 2005.
5. G.-F. Sargentis, K. Hadjibiros, and A. Christofides, Plastiras lake: the impact of water level on the aesthetic value of landscape, Proceedings of the 9th International Conference on Environmental Science and Technology (9CEST), Rhodes, B, 817–824, Department of Environmental Studies, University of the Aegean, 2005.

Our works that reference this work:

1. K. Hadjibiros, A. Katsiri, A. Andreadakis, D. Koutsoyiannis, A. Stamou, A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Multi-criteria reservoir water management, Proceedings of the 9th International Conference on Environmental Science and Technology (9CEST), Rhodes, A, 535–543, Department of Environmental Studies, University of the Aegean, 2005.
2. K. Hadjibiros, A. Katsiri, A. Andreadakis, D. Koutsoyiannis, A. Stamou, A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Multi-criteria reservoir water management, Global Network for Environmental Science and Technology, 7 (3), 386–394, doi:10.30955/gnj.000394, 2005.
3. D. Koutsoyiannis, Scale of water resources development and sustainability: Small is beautiful, large is great, Hydrological Sciences Journal, 56 (4), 553–575, doi:10.1080/02626667.2011.579076, 2011.
4. A. Efstratiadis, and K. Hadjibiros, Can an environment-friendly management policy improve the overall performance of an artificial lake? Analysis of a multipurpose dam in Greece, Environmental Science and Policy, 14 (8), 1151–1162, doi:10.1016/j.envsci.2011.06.001, 2011.
5. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of the Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.
6. H. Tyralis, A. Tegos, A. Delichatsiou, N. Mamassis, and D. Koutsoyiannis, A perpetually interrupted interbasin water transfer as a modern Greek drama: Assessing the Acheloos to Pinios interbasin water transfer in the context of integrated water resources management, Open Water Journal, 4 (1), 113–128, 12, 2017.
7. G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, T. Iliopoulou, and D. Koutsoyiannis, Stochastic evaluation of landscapes transformed by renewable energy installations and civil works, Energies, 12 (4), 2817, doi:10.3390/en12142817, 2019.
8. R. Ioannidis, and D. Koutsoyiannis, A review of land use, visibility and public perception of renewable energy in the context of landscape impact, Applied Energy, 276, 115367, doi:10.1016/j.apenergy.2020.115367, 2020.
9. N. Mamassis, A. Efstratiadis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Water and Energy, Handbook of Water Resources Management: Discourses, Concepts and Examples, edited by J.J. Bogardi, T. Tingsanchali, K.D.W. Nandalal, J. Gupta, L. Salamé, R.R.P. van Nooijen, A.G. Kolechkina, N. Kumar, and A. Bhaduri, Chapter 20, 617–655, doi:10.1007/978-3-030-60147-8_20, Springer Nature, Switzerland, 2021.
10. A. Efstratiadis, I. Tsoukalas, and D. Koutsoyiannis, Generalized storage-reliability-yield framework for hydroelectric reservoirs, Hydrological Sciences Journal, 66 (4), 580–599, doi:10.1080/02626667.2021.1886299, 2021.
11. G.-F. Sargentis, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Landscape planning of infrastructure through focus points’ clustering analysis. Case study: Plastiras artificial lake (Greece), Infrastructures, 6 (1), 12, doi:10.3390/infrastructures6010012, 2021.
12. G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, and D. Koutsoyiannis, A stochastic view of varying styles in art paintings, Heritage, 4, 21, doi:10.3390/heritage4010021, 2021.
13. G.-K. Sakki, A. Castelletti, C. Makropoulos, and A. Efstratiadis, Unwrapping the triptych of climatic, social and energy-market uncertainties in the operation of multipurpose hydropower reservoirs, Journal of Hydrology, 628, 132416, doi:10.1016/j.jhydrol.2024.132416, 2025.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Chung, E. S., and K. S. Lee, A social-economic-engineering combined framework for decision making in water resources planning, Hydrology and Earth System Sciences, 13, 675-686, 2009.
2. Parisopoulos, G. A., M. Malakou, and M. Giamouri, Evaluation of lake level control using objective indicators: The case of Micro Prespa, Journal of Hydrology, 367(1-2), 86-92, 2009.
3. #Romanescu, G., C. Stoleriu, and A. Lupascu, Morphology of the lake basin and the nature of sediments in the area of Red Lake (Romania), Annals of the University of Oradea – Geography Series, XX(1), 44-57, 2010.
4. #Sargentis G. F., V. Symeonidis, and N. Symeonidis, Rules and methods for the development of a prototype landscape (Almyro) in north Evia by the creation of a thematic park, Proceedings of the 12th International Conference on Environmental Science and Technology (CEST2011), Rhodes, Greece, 2011.
5. Shamsudin, S., A. A. Rahman and Z. B. Haron, Water level evaluation at Southern Malaysia reservoir using fuzzy composite programming, International Journal of Engineering and Advanced Technology, 2(4), 127-132, 2013.
6. #Romanescu, G., C. C. Stoleriu, and A. Enea, Water management, Limnology of the Red Lake, Romania, Springer, 2013.
7. Zhang, T., W. H. Zeng, S. R. Wang, and Z. K. Ni, Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China, Hydrology and Earth System Sciences, 18, 1493-1502, doi:10.5194/hess-18-1493-2014, 2014.
8. Zhang, T., W. H. Zeng, and F. L. Yang, Applying a BP neural network approach to the evolution stage classification of China Rift Lakes, International Journal of Modeling and Optimization, 4(6), 450-454, doi:10.7763/IJMO.2014.V4.416, 2014.
9. Tegos, M., I. Nalbantis, and A. Tegos, Environmental flow assessment through integrated approaches, European Water, 60, 167-173, 2017.
10. Yates, T. M., and A. A. Khan, Hydroelectric power generation from reservoirs in Savannah river basin, American Journal of Engineering and Applied Sciences, 17(2), 56-60, doi:10.3844/ajeassp.2024.56.60, 2024.
11. Angelakis, A. N., A. Baba, M. Valipour, J. Dietrich, E. Fallah-Mehdipour, J. Krasilnikoff, E. Bilgic, C. Passchier, V. A. Tzanakakis, R. Kumar, Z. Min, N. Dercas, and A. T. Ahmed, Water dams: From ancient to present times and into the future, Water, 16(13), 1889, doi:10.3390/w16131889, 2024.

Tagged under: Course bibliography: Water Resources Management, Environment, Hydrosystems, Optimization