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1. Introduction  

According to the statistical theory of extremes, the distribution function H(x) of the maximum of a 
number n of identically distributed random variables, if n is large enough (theoretically infinite), takes 
the asymptotic form, known as the Generalised Extreme Value (GEV) distribution (Jenkinson, 1955), 

 H(x) = exp
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where ψ, λ > 0 and κ are location, scale and shape parameters, respectively. (Note that the sign 
convention of κ in (1) is opposite to that most commonly used in hydrological texts and the location 
parameter is dimensionless). 
 When κ = 0, the type I distribution of maxima (EV1 or Gumbel distribution),  

 H(x) = exp[–exp (–x/λ + ψ)]  (2) 

is obtained, which is unbounded from both below and above (–∞ < x < +∞). When κ > 0, H(x) 
represents the extreme value distribution of maxima of type II (EV2), which is bounded from below 
and unbounded from above (λ ψ – λ/κ ≤ x < +∞). A special case, the Fréchet distribution, is obtained 
when the lower bound becomes zero (ψ = 1/κ). When κ < 0, H(x) represents the type III (EV3) 
distribution of maxima. This, however, is of no practical interest in hydrology as it refers to random 
variables bounded from above (–∞ < x ≤ λ ψ – λ/κ). It is noted that if the distribution of minima is of 
interest, the roles of types II and III reverse, e.g. the type III distribution is bounded from below and is 
significant for the study of droughts.  
 The EV1 distribution has been the prevailing model for rainfall extremes despite the fact that it 
results in the highest possible risk for engineering structures, i.e. it yields the smallest possible design 
rainfall values in comparison to those of the EV2 for any value of the shape parameter. The simplicity 
of the calculations of the EV1 distribution along with its geometrical depiction through a linear 
probability plot may have contributed to its popularity in hydrologists and engineers. There is also a 
theoretical justification, as EV1 is the asymptotic extreme value distribution for a wide range of parent 
distributions that are common in hydrology.  
 However, a recent study (Koutsoyiannis, 2003) showed that convergence of the exact distribution 
of maxima to the asymptote EV1 may be extremely slow, thus making the EV1 distribution an 
inappropriate approximation of the exact distribution of maxima. Besides, the attraction of parent 
distributions to this asymptote relies on the assumption that parameters of the parent distribution are 
constant in time, which may not be the case in hydrological processes. Slight relaxation of this 
assumption may result in the EV2 rather than the EV1 asymptote. It was also shown that small sizes of 
records, typically used in hydrological applications, hide the EV2 distribution and display it as if it 
were EV1. This allowed the conjecture that the broad use of the EV1 distribution worldwide may in 
fact be related to small sample sizes rather than to the real behaviour of rainfall maxima, which should 
be better described by the EV2 distribution. This conjecture is investigated thoroughly here based on 
real-world long rainfall records.  

2. Data 

Some thousands of raingauge data sets from Europe and USA were examined, namely data from the 
United States Historical Climatology Network (USHCN), Land Surface Observation Data of the UK 
Met Office, and data from the oldest stations of France, Italy and Greece. Among these, a total of 169 
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stations were found to have at least 100 years of data (not including the years with missing data) and 
were chosen for further analysis. From the continuous record of each station, the series of annual 
maximum values of daily rainfall were extracted. The geographical locations of stations are shown in 
Figure 1 and are classified in six geographical zones as shown in Table 1. Table 2 gives the general 
characteristics of the top ten, in terms of record length, raingauges, which are from all countries of this 
case study (USA, UK, France, Italy and Greece). 

 
Figure 1 Geographical locations of raingauges. 

3. Initial exploration 

As an initial step, the typical statistics and the L-statistics (based on probability-weighted moments; 
Hosking 1990) were estimated for each annual maximum series of daily rainfall depths. The ranges in 
each of the six geographical zones and the corresponding averages over all stations of each zone are 
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shown in Table 3. Potential relationships among these statistics and their geographical variation were 
subsequently explored. 

Table 1 Geographical zones and corresponding numbers of raingauges and data values.  

Zone no. Description Number 
of 
stations 

Number of 
station-
years 

1 USA, N of the 35th parallel and E of the 105th meridian 104 10942 
2 USA, S of the 35th parallel and E of the 105th meridian 19 2012 
3 USA, N of the 35th parallel and W of the 105th meridian 15 1610 
4 USA, S of the 35th parallel and W of the 105th meridian 3 304 
5 UK 24 2624 
6 Mediterranean: Greece, Italy, S France 4 573 
Total 169 18065 

 
Table 2 General characteristics of the top ten, in terms of record length, raingauges.  

Name Zone 
Latitu-
de (oN) 

Longi-
tude (o) 

Eleva-
tion (m)

Record 
length

Start 
year 

End 
year

Years with missing 
values 

Florence 6  43.80 11.20 40 154 1822 1979 1874-77 
Genoa 6 44.40 8.90 21 148 1833 1980  
Athens 6 37.97 23.78 107 143 1860 2002  
Charleston City 2 32.79 –79.94 3 131 1871 2001  
Oxford 5 51.72 –1.29  130 1853 1993 1930, 1933,1961-69
Cheyenne 1 41.16 –104.82 1867 130 1871 2001 1877 
Marseille 6 43.45 5.20 6 128 1864 1991  
Armagh 5 54.35 –6.65  128 1866 1993  
Savannah  2 32.14 –81.20 14 128 1871 2001 1969-71 
Albany 1 42.76 –73.80 84 128 1874 2001  

Table 3 Statistical characteristics of annual maximum daily rainfall series for the different geographical zones.  

  Geographical zone 
  1 2 3 4 5 6 Total 
Sample mean, µ (mm) min 34.2 65.3 19.1 31.8 31.3 48.5 19.1 
 mean 65.7 91.0 36.5 39.4 36.1 68.9 61.4 
 max 90.1 109.0 75.3 48.7 46.4 110.9 110.9 
Sample maximum, xmax (mm) min 88.4 146.8 40.1 84.3 54.1 140.0 40.1 
 mean 175.8 265.7 83.9 125.2 89.7 225.4 165.8 
 max 429.5 490.0 157.0 201.2 130.3 389.2 490.0 
Coefficient of variation, Cv min 0.26 0.32 0.31 0.35 0.26 0.35 0.26 
 mean 0.38 0.42 0.36 0.41 0.34 0.42 0.38 
 max 0.68 0.57 0.47 0.47 0.45 0.48 0.68 
Coefficient of skewness, Cs min 0.58 0.89 0.83 1.08 0.55 1.65 0.55 
 mean 1.69 1.81 1.19 1.93 1.70 1.92 1.67 
 max 4.94 3.89 1.69 3.32 3.22 2.03 4.94 
L-coefficient of variation, τ2 min 0.14 0.18 0.16 0.19 0.14 0.18 0.14 
 mean 0.19 0.21 0.19 0.21 0.17 0.22 0.19 
 max 0.26 0.25 0.25 0.22 0.22 0.24 0.26 
L-coefficient of skewness, τ3 min 0.12 0.16 0.14 0.16 0.15 0.22 0.12 
 mean 0.24 0.26 0.21 0.23 0.24 0.26 0.24 
 max 0.43 0.38 0.26 0.29 0.35 0.28 0.43 
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Figure 2 (a) Sample mean and maximum, over the observation period, of each annual maximum daily rainfall 
series for the six different geographical zones; (b) L-variation and L-skewness coefficients vs. the mean of the 
annual maximum series; (c) L-skewness vs. L-variation coefficient for the series of the six different geographical 
zones; (d) L-skewness vs. L-variation coefficient for 169 synthetic samples with lengths and means equal to 
those of the historical records, generated from the EV2 distribution with shape parameter κ = 0.103 and location 
parameter ψ = 3.34. 

 The sample mean (µ) and maximum values (xmax) over the observation period of each annual 
maximum daily rainfall series are plotted in Figure 2(a) using different symbols for each geographical 
zone. It is observed there that (a) both mean and maximum values vary with the geographical zone (as 
expected): clouds of points referring to different zones occupy different areas in the diagram; (b) there 
exists a clear relationship between mean and maximum values (as expected), which seems to be 
independent of the geographical zone; and (c) this relationship can be approximated by a power law 
with exponent slightly higher than one. The coefficients of L-variation (τ2) and L-skewness (τ3), 
plotted in Figure 2(b) against mean, are highly variable and do not correlate with mean. Figure 2(c), in 
which τ3 is plotted against τ2 using different symbols for different geographical zones, shows a positive 
correlation between τ2 and τ3 (correlation coefficient = 0.52) and simultaneously indicates 
independence of the geographical zone, as clouds of points referring to different zones are 
homogeneously mixed in the diagram. However, the positive correlation between τ2 and τ3 does not 
have a physical meaning but rather is a statistical effect. To show this, 169 synthetic samples with 
lengths and means equal to those of the historical records, were generated from the EV2 distribution 
with constant shape parameter κ = 0.103 and location parameter ψ = 3.34 (these values are clarified in 
the next section). The values of the statistics τ2 and τ3 of these synthetic samples have been plotted in 
Figure 2(d), which reveals a picture similar to that of Figure 2(c) with a strong correlation between τ2 
and τ3 (correlation coefficient = 0.60). Notably, the dispersion of τ3 in Figure 2(d) is identical to that in 
Figure 2(c) whereas the dispersion of τ2 in the former is slightly smaller than in the latter.  
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Figure 3 EV2 (continuous lines) and EV1 (dotted lines) distributions fitted by the method of L-moments and 
comparison with the empirical distribution (crosses) for the annual maximum series of (a) Charleston City, 
USA/SC; (b) Oxford, UK (c) Marseille, France; and (d) Florence, Ximeniano Observatory, Italy (Gumbel 
probability plots). The estimated shape parameters κ are respectively 0.083, 0.081, 0.155 and 0.120. 

4. Fitting of distribution functions  

GEV distributions were fitted to each of the 169 series using three methods, maximum likelihood, 
moments and L-moments. The averages over all raingauges and the dispersion characteristics 
(minimum and maximum values and standard deviations) of the parameters are shown in Table 4. Τhe 
shape parameter κ is the most important as it determines the type of the distribution of maxima (EV1 
or EV2) and consequently the behaviour of the distribution in its tail. Besides, it is the most uncertain 
parameter as its estimation depends on the skewness whose value cannot be determined accurately. 
Clearly, Table 4 shows that in more than 90% of the series the estimated κ is positive, which suggests 
EV2 distributions. (The smaller values of κ given by the method of moments, as shown in Table 4, and 
the smaller percentage of positive values, 74%, are clearly a result of the significant negative bias 
implied by the estimators of this method, as verified by Monte Carlo simulations). The estimated κ 
values range between slightly negative to over 0.30. Given the observation of the previous section on 
Figure 2(d) regarding the statistical behaviour of τ3, which determines κ, it should be expected that the 
large range of κ values is rather a statistical effect. This will be examined further below. 
 Figure 3 depicts the EV2 distribution functions fitted by the method of L-moments to four of the 
stations included in the top ten stations of Table 2. For comparison, Figure 3 includes also plots of the 
EV1 distributions fitted again by the method of L-moments and of the empirical distributions 
determined using Weibull plotting positions. Clearly, the observed maxima for high return periods are 
higher than the predictions of the EV1 distributions and even from those of the EV2 distribution. 
Obviously, however the EV2 distribution is in closer agreement to the empirical distribution than the 
EV2 distribution. The differences of EV1 and EV2 seem to be not very significant for return periods 
up to 50-100 years.  
 These differences, however, become extremely significant when the distribution functions are 
extrapolated to higher return periods, which are greatly important in the design of major hydraulic 
constructions such as dam spillways. This is demonstrated in Figure 4(a), which is similar to the 
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diagrams of Figure 3 but with emphasis given to the tail of the distribution, for return periods higher 
than 200 years. Figure 4(a) refers to another station, Athens, Greece, again included in the top ten 
stations of Table 2. Clearly, the EV1 distribution underestimates seriously the maximum rainfall for 
high return periods. For instance, at the return period 20 000 years the EV1 distribution results in a 
value of rainfall depth half that obtained by the EV2 distribution. Another comparison of the two 
distributions can be done in terms of the value of probable maximum precipitation (PMP). This was 
initially considered to be the greatest depth of precipitation for a given duration that is physically 
possible over a geographical location. However, more recently it has been considered as one high 
rainfall value that has a certain return period like other, higher or lower, values of rainfall depth. Thus, 
National Research Council (1994, p. 14) assessed that PMP estimates in the USA have return periods 
of the order 105 to 109 and Koutsoyiannis (1999) showed that PMP values estimated by the method of 
Hershfield (1961) have return periods around 60 000 years. The latter method was used by 
Koutsoyiannis and Baloutsos (2000) to estimate PMP in Athens and resulted in a value of 424.1 mm, 
which has been plotted in Figure 4(a). If the return period of this value is estimated by the EV2 
distribution, it turns out to be 37 000 to 300 000 years depending on the parameter estimation method 
whereas EV1 results in the unrealistically high value 4×1010 years.  
Table 4 Averages over all raingauges and dispersion characteristics of the parameters of the GEV distribution of 
the annual maximum daily rainfall series.  

  Estimation method 
Parameter  Max likelihood Moments L-Moments 
κ Mean 0.103 0.052 0.103 
 Standard deviation 0.080 0.079 0.085 
 Min –0.061 –0.121 –0.080 
 Max 0.303 0.238 0.373 
 Percent positive 91% 74% 92% 
λ Mean 15.39 16.64 15.52 
 Standard deviation 5.63 6.31 5.81 
 Min 4.95 5.16 4.86 
 Max 31.08 34.89 32.13 
ψ Mean 3.36 3.14 3.34 
 Standard deviation 0.42 0.44 0.43 
 Min 2.54 2.07 2.42 
 Max 4.48 4.44 4.47 

5. Study of the variation of parameters  

The problem of the parameter variation and the question whether this variation corresponds to physical 
(climatological) reasons or is a purely statistical (sampling) effect have been already posed in the 
previous sections. Here they will be studied more systematically. As already indicated, simulation 
assuming that one or more statistical parameters are constant is a proper means to assess the sampling 
effect and estimate the portion of parameter variation that this effect explains.  
 As already discussed, the variation of the means of the annual maximum daily rainfall series 
reflects a climatic variability and is different in different geographical zones. This is also verified by 
simulation: the standard deviation of means over all stations is 20.0 mm while a simulation assuming 
constant mean over all stations would yield a standard deviation of only 2.3 mm. This, however, is not 
the case with other parameters, if they are expressed on a non-dimensionalised basis. Their variability 
is mostly a sampling effect. To demonstrate this, 169 synthetic samples with lengths and means equal 
to those of historical series were generated from the GEV distribution with constant shape parameter κ 
= 0.103 and location parameter ψ = 3.34. These constant values are the averages of the relevant 
parameters estimated by the method of L-moments (Table 4). The empirical distributions of several 
dimensionless sample statistics were then obtained and compared graphically to the corresponding 
empirical distributions obtained from the 169 historical annual maximum daily rainfall series (Figure 
5). It can be observed that in most cases the empirical distributions of the synthetic samples are almost 
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identical to those of the historical ones. The highest differences between the two appear in the 
distributions of coefficients of variation τ2 and Cv, and that of the location parameter ψ.  
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Figure 4 EV2 and EV1 distributions (Gumbel probability plots) fitted by several methods and comparison with 
the empirical distribution (a)  for the series of Athens National Observatory, Greece (κ = 0.170, 0.158 and 0.106 
for the methods of L-moments, maximum likelihood and moments respectively; PMP = 424.1, mm estimated by 
Koutsoyiannis and Baloutsos, 2000); (b) for the unified record of all 169 series. 
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Figure 5 Empirical distribution functions of several dimensionless sample statistics (coefficients of variation τ2 
and Cv, skewness τ3 and Cs, and kurtosis τ4; ratio of maximum value xmax to mean value µ, denoted as υ; and L-
moments estimates of parameters κ and ψ of the GEV distribution), as computed from either: the 169 historical 
annual maximum daily rainfall series (thick continuous lines); 169 synthetic samples with lengths and means 
equal to those of historical series generated from the GEV distribution with constant shape parameter κ = 0.103 
and location parameter ψ = 3.34 (dotted lines); and 169 synthetic samples with lengths and means equal to those 
of historical series generated from the GEV distribution with shape parameter κ and location parameter ψ 
varying following uniform distributions (dashed lines). 

 An additional simulation was performed assuming that the parameters κ and ψ are not constant but 
random variables uniformly distributed over an interval, determined so as to match the standard 
deviation of the parameters shown in Table 4. The resulting empirical distribution functions are also 
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plotted in Figure 5. In all cases, the greater dispersion of the simulated sampling distributions as 
compared to the historical ones is apparent. 
Table 5 Parameters of the EV2 distribution as estimated by four different methods from the unified record of all 
169 series.  

 Estimation method 
Parameter Max likelihood Moments L-moments Least squares 
κ 0.093 0.126 0.104 0.148 
λ 0.258 0.248 0.255 0.236 
ψ 3.24 3.36 3.28 3.54 

 These simulation experiments and comparisons with historical data suggest that a hypothesis of a 
common statistical law applying to all 169 series, except for a scaling parameter to account for the 
different means µ, is not far from reality. In this case, a radically improved approach to fitting a 
probability distribution becomes possible. If the annual maximum daily rainfall series of each station 
is rescaled by an appropriate scaling factor, then all 18 065 station-years can be regarded as 
realisations of the same statistical law and can be unified in one statistical record. The scaling factor 
can be the sample mean µ or a variant of it like the one used by Hershfield (1961) to take account of 
the effect of outliers on the sample mean.  
 The empirical distribution of the unified rescaled annual maximum daily rainfall series is depicted 
in Figure 4(b). To this, the EV2 distribution is fitted and also plotted in Figure 4(b) whereas its 
parameters are shown in Table 5. It is observed that the methods of maximum likelihood, moments 
and L-moments result in (a) different parameter estimates despite the extremely large record length 
(18 065), and (b) estimates of distribution quantiles that are systematically lower than the empirical 
estimates in the tail (for return periods > 500 years). Both these observations may indicate that the 
EV2 distribution is an imperfect model for extreme rainfall. However problem (b) can be resolved by 
adopting a different parameter estimation method. Here a weighted least squares method was used, 
which minimises the weighted average of square errors between empirical and EV2 quantiles. To give 
higher importance to the high values, weights equal to the empirical quantiles were assumed. As 
shown in Table 5, the latter method resulted in a shape parameter κ = 0.15, greater than those of the 
other methods. Its behaviour in the tail seems to be much closer to reality than those of the other 
methods (Figure 4(b)), which is very important from an engineer’s point of view. 
 In addition to EV2, the EV1 distribution with parameters fitted by the method of L-moments (λ = 
0.283, ψ = 2.99) was plotted in Figure 4(b). Its inappropriateness for return periods greater than 50 
years is more than obvious.  

6. From EV1 to EV2 distribution 

All above analyses converge to the conclusions that (a) the EV1 distribution is inappropriate for 
extreme rainfall and the EV2 distribution is an alternative much closer to reality, and (b) the shape 
parameter of the EV2 distribution can be hypothesised to have a constant value κ = 0.15, regardless of 
the geographical location of the raingauge station.  
 If the shape parameter of the EV2 distribution is fixed, its handling becomes as simple as that of 
the EV1 distribution. For example, the estimation of the remaining two parameters becomes similar to 
that of the EV1 distribution. That is, the scale parameter can be estimated by the method of moments 
from 

 λ = c1 σ (3) 

where c1 = κ / Γ(1 – 2 κ) – Γ 2(1 – κ) or c1 = 0.61 for κ = 0.15, while in the EV1 case c1 = 0.78. The 
relevant estimate for the method of L-moments is 

 λ = c2 λ2 (4) 

where c2 = κ / [Γ(1 – κ)(2κ – 1)] or c2 = 1.23 for κ = 0.15, while in the EV1 case c2 = 1.443. The 
estimate of the location parameter for both the method of moments and L-moments is 
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 ψ = µ/λ – c3 (5) 

where c3 = [Γ(1 – κ) – 1] / κ or c3 = 0.75 for κ = 0.15, while in the EV1 case c3 = 0.577.  
 The construction of linear probability plots is also easy if κ is fixed. It suffices to replace in the 
horizontal axis the Gumbel reduced variate zH := –ln(–ln H) with the GEV reduced variate zH := 
[(-ln H)–κ – 1] / κ. Such plots are portrayed in Figure 6 for the same distributions depicted in Figure 3 
on Gumbel probability plots, but now for κ = 0.15. In addition to the empirical and EV2 distributions, 
upper and lower prediction limits of the former computed by Monte Carlo simulation have been 
plotted in this figure, which demonstrate the high uncertainty of estimates for large return periods.  
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Figure 6 Empirical distributions (crosses), EV2 distributions (continuous lines), and 95% Monte Carlo 
prediction limits for the empirical distribution (dashed lines) of the series of (a) Charleston City, USA/SC; (b) 
Oxford, UK (c) Marseille, France; and (d) Florence, Italy, as in Figure 3 but in GEV plot with κ = 0.15. The EV2 
distribution was fitted by the method of L-moments assuming fixed κ = 0.15.  

7. Conclusions  

The conclusions of this extensive analysis based on 169 rainfall series with lengths 100-154 years and 
a total number of 18 065 station-years from stations in Europe and USA may be summarised as 
follows. 

1. The EV1 distribution is inappropriate for modelling extreme rainfall series, while the EV2 
distribution is a choice much closer to reality.  

2. The shape parameter κ of the EV2 distribution is very hard to estimate on the basis of an individual 
series, even in series with length 100 years or more. This is because of the estimation bias and the 
large sampling variability of the estimators of κ. The most important conclusion, however is that 
the observed variability in the values of κ in the 169 series is almost entirely explained by statistical 
reasons as it is almost identical with the sampling variability. This allows the hypothesis that the 
shape parameter of the EV2 distribution is constant for all examined geographical zones, with 
value κ = 0.15. 

3. The location parameter ψ of the EV2 distribution turned out to be fairly constant with a mean value 
ψ = 3.54 (corresponding to κ = 0.15) and coefficient of variation as low as 0.13. However, this 
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small variation cannot be attributed to statistical reasons entirely as the sampling variation seems to 
be slightly lower than that observed in the 169 historical samples. This, however, is not a major 
problem as ψ can be estimated with relative accuracy on the basis of an individual series. 

4. The scale parameter λ of the EV2 distribution varies with the station location and there is no need 
to seek a generalised law about it as it can be estimated with relative accuracy on the basis of an 
individual series. 

5. In engineering practice, the handling of the EV2 distribution can be as easy as that of the EV1 
distribution if the shape parameter of the former is fixed to the value κ = 0.15. The parameter 
estimation is virtually the same and very similar linear probability plots can be constructed. 

 
The results of this study converge with other recent studies such as those by Koutsoyiannis (1999), 
Chaouche (2001) and Chaouche et al. (2002). Koutsoyiannis (1999) revisited Hershfield’s (1961) data 
set (95 000 station-years from 2645 stations), and showed that this can be described by the EV2 
distribution. Chaouche (2001) exploited a data base of 200 rainfall series of various time steps (month, 
day, hour, minute) series from the five continents, each including more than 100 years of data. Using 
multifractal analyses he showed that (a) an EV2/Pareto type law describes the rainfall amounts for 
large return periods; (b) the exponent of this law is scale invariant over scales greater than an hour; 
and (c) this exponent is almost space invariant. 
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