
 1

Mathematical derivations for seasonal models

reproducing overyear scaling behaviour

Andreas Langousis & Demetris Koutsoyiannis

Department of Water Resources, School of Civil Engineering, National Technical University, Athens

Heroon Polytechneiou 5, GR-157 80 Zographou, Greece

Introduction

This report is an accompanying material of the paper “A stochastic methodology for

generation of seasonal time series reproducing over year scaling”. Particularly, the

mathematical derivations for the two stochastic hydrological models developed (i.e. MPAR-

SMAF and Split model) are presented in detail in this paper. In section A, a property of

scaling stochastic processes, which forms the basis of the functioning structure of the MPAR-

SMAF model, is presented and proved. Section B includes the objective functions proposed

for the nonlinear optimizations required by the Split model, the analytical expressions of their

derivatives, as well as two algorithms developed particularly for Split model.

A. MPAR-SMAF model

We will derive a property of scaling stochastic processes, which is the basis of the MPAR-

SMAF model. Particularly, we will prove that the sum of two or more stationary stochastic

processes with the same Hurst coefficient H is a stationary stochastic process with Hurst

coefficient equal to the initial one.

 If Qi is a stationary stochastic process where the subscript i denotes time, then the long-

term persistence of the stationary stochastic process Qi can be described by the equation

 ()Qi
(k) – kµq =d 



k

λ
H

 ()Qj
(λ) – λµq (A.1)

 2

where =d denotes equality in distribution, Η is the Hurst coefficient of the stochastic process

Qi, µq:= Ε[Qi] is the expected value of the stochastic process and Qi
(k) is the stochastic process

defined as the sum of k sequential time terms of the stochastic process Qi,

 Qi
(k) = ∑

j=(i-1)k+1

ik
 Qj (A.2)

Let the stochastic processes Pi and Pi
(k) be defined identically to the stochastic processes Qi

and Qi
(k)and have the same Hurst coefficient H. In this case it is evident that

 ()Pi
(k) – kµp =d 



k

λ
H

 ()Pj
(λ) – λµp (A.3)

holds. Adding, now, equations (A.1) and (A.3) we obtain

 ()Qi
(k) + Pi

(k) – kµq – kµp =d 


k

λ
H

 ()Qj
(λ) + Pj

(λ) – λµq – λµp (A.4)

which denotes that if two stationary stochastic processes Qi, Pi with the same Hurst

coefficient H are added, then the resulting stochastic process Qi + Pi is stationary with Hurst

coefficient H equal to the initial one. It is evident, that the former proof can be generalised for

more than two stationary stochastic processes.

B. Multivariate Split model

B.1 Additional material for section 3.2

B.1.1 Objective function

We group all the unknown parameters of each location l into the vector ζl which has k(n+4)

elements, i.e.

 ζl := [el
1, …, el

k, δl
1, 0, …, δl

k, 0, δl
1, 1, …, δl

k, 1, βl
0, βl

1, …, βl
k(n+1)-1]T , n ≥ 1; l = 1, …, ν (B.1)

 3

We also group the statistical properties of the stochastic processes Xi
l and Zl

i into the

following vectors

 θl
1 := [Var[Xl

1], Var[Xl
2], …, Var[Xl

k]]T , l = 1, …, ν (B.2)

 θl
2 := [Cov[Xl

k, Xl
1], Cov[Xl

1, Xl
2], …, Cov[Xl

k-1, Xl
k]]T , l = 1, …, ν (B.3)

 θl
3 := [Cov[Zl

i, Zl
i], Cov[Zl

i, Zl
i-1], …, Cov[Zl

i, Zl
i-n]]T

 , l = 1, …, ν (B.4)

and define the vectors θ1(ζl), θ2(ζl) and θ3(ζl) identically to vectors θl
1, θl

2, θl
3. θ1(ζl), θ2(ζl)

and θ3(ζl) can be estimated from equations (15), (17), (18) and (19). In this case, the objective

function that we propose for each location l is,

 J(ζl
*) = min[J(ζl)] = λl

1║θ1(ζl) - θl
1║2 + λl

2║θ2(ζl) – θl
2║2 + λl

3║θ3(ζl) – θl
3║2 +

 h1(ζl) + h2(ζl) + h3(ζl) + h4(ζl) (B.5)

where λl
1, λl

2 and λl
3 are positive weighting factors, ║.║ denotes the Euclidean norm of a

vector and h1(ζl), h2(ζl), h3(ζl), h4(ζl) are penalty terms positively valued if constraints (20)-

(22) respectively are not satisfied. The value of (B.5) will be zero in case that equations (15),

(17), (18) and (19) and constraints (20)-(22) are satisfied simultaneously. Otherwise the

objective function will be positively valued. The term h1(ζl) which ensures the maintenance of

constraint (20), is given by the equation,

 h1(ζl) = κl
1








 ∑
s=1

k

 ()U(ε - δl
s, 0) (δl

s, 0 - ε)2 + U(ε - βl
0) (βl

0 - ε)2 (B.6)

where κl
1 is a positively valued penalty factor and U(x) is Heaviside’s step function with U(x)

= 1 if x ≥ 0 and U(x) = 0 otherwise. The term h2(ζl) ensures the maintenance of constraint (21)

and it is given by the equation,

 h2(ζl) = κl
2 ║θ4(ζl)║2 (B.7)

 4

where κl
2 is a positively valued penalty factor and θ4(ζl) is a vector with k elements estimated

by the expression,

 (l)θ4
j = U{(δl

j, 1)2 – (1-ε)2 δl
j, 0 δl

j-1, 0} {(δl
j, 1)2 – (1-ε)2 δl

j, 0 δl
j-1, 0} , j = 1, …, k (B.8)

The terms h3(ζl) and h4(ζl) which ensure the maintenance of constraint (22), are given by the

equations,

 h3(ζl) = κl
3 ∑

j=1

k(n+1)-1

 ()U(ε - βl
j) (βl

j - ε)2 (B.9)

 h4(ζl) = κl
4 ∑

j=1

k(n+1)-1

 ()U(βl
j - (1-ε) βl

0) (βl
j - (1-ε) βl

0)2 (B.10)

where κl
3 and κl

4 are positively valued penalty factors.

B.1.2 Derivative of the objective function

The minimization of function J(ζl) is facilitated by knowing the analytical expression of its

derivative with respect to vector ζl. After algebraic manipulations it can be shown that,

dJ(ζl)

dζl = 2 λl
1{θ1(ζl)-θl

1}T pl
1 + 2 λl

2{θ2(ζl)-θl
2}T pl

2 + 2 λl
3{θ3(ζl)-θl

3}T pl
3 + φl

1
T +

 2 κl
2 θ4(ζl)T pl

4 + φl
3

T + φl
4

T (B.11)

 where pl
1, pl

2 and pl
4 are matrices with dimensions k × k(n+4), pl

3 is a matrix with

dimensions n+1 × k(n+4) and φl
1, φl

3, φl
4 are vectors with dimension k(n+4).

 The non-zero elements of matrix pl
1 are,

 (l)p1
i, i = 2 el

i βl
0 , i = 1, …, k (B.12)

 (l)p1
i, i+k = 1 , i = 1, …, k (B.13)

 (l)p1
i, 3k+1 = (el

i)2 , i = 1, …, k (B.14)

The non-zero elements of matrix pl
2 are,

 5

 (l)p2
1, 1 = el

k βl
1 (B.15)

 (l)p2
1, k = el

1 βl
1 (B.16)

 (l)p2
1, 2k+1 = 1 (B.17)

 (l)p2
1, 3k+2 = el

1 el
k (B.18)

 (l)p2
i, i = el

i-1 βl
1 , i = 2, …, k (B.19)

 (l)p2
i, i-1 = el

i βl
1 , i = 2, …, k (B.20)

 (l)p2
i, i+2k = 1 , i = 2, …, k (B.21)

 (l)p2
i, 3k+2 = el

i-1 el
i , i = 2, …, k (B.22)

The non-zero elements of matrix pl
3 are,

 (l)p3
1, j = 2









 el
j βl

0 +








 ∑
s=j+1

k

 el
s βl

s-j +








 ∑
s=1

j-1

 el
s βl

j-s , j = 1, …, k (B.23)

 (l)p3
1, j = 1 , j = k+1, …, 2k (B.24)

 (l)p3
1, j = 2 , j =2k+2, …, 3k (B.25)

 (l)p3
1, 3k+1 = ∑

s=1

k

 (el
s)2 (B.26)

 (l)p3
1, j = ∑

s=1

4k-j+1

 el
s el

s+j-3k-1 , j =3k+2, …, 4k (B.27)

 (l)p3
2, 2k+1 = 1 (B.28)

 (l)p3
i, j = ∑

s=1

k

 {el
s (βl

k(i-1)+j-s + βl
k(i-1)-j+s)} , i = 2, …., n+1; j = 1, …, k (B.29)

 (l)p3
i, k(i+1)+r+1 = U(k-1-r)









 ∑
s=1

r

 el
s el

k+s-r +U(-|k-r|)








 ∑
s=1

k

 (el
s)2 + U(r-k-1)

 6









 ∑
s=r-k+1

k

 el
s el

s-r+k , i = 2, …., n+1; r = 1, …., 2k-1 (B.30)

The non-zero elements of matrix pl
4 are,

 (l)p4
1, k+1 = -(1-ε)2 δl

k, 0 (B.31)

 (l)p4
i, k+i = - (1-ε)2 δl

i-1, 0 , i = 2, …., k (B.32)

 (l)p4
1, 2k = -(1-ε)2 δl

1, 0 (B.33)

 (l)p4
i, k+i-1 = -(1-ε)2 δl

i, 0 , i = 2, …., k (B.34)

 (l)p4
i, 2k+i = 2 δl

i, 1 , i = 1, …., k (B.35)

The non-zero elements of vector φl
1 are,

 (l)φ1
i+k = 2 κl

1 U(ε - δl
i, 0) (δl

i, 0 - ε) , i = 1, …., k (B.36)

 (l)φ1
3k+1 = 2 κl

1 U(ε - βl
0) (βl

0 - ε) (B.37)

The non-zero elements of vector φl
3 are,

 (l)φ3
3k+1+i = 2 κl

3 U(ε -βl
i) (βl

i -ε) , i = 1, …., k(n+1)-1 (B.38)

The non-zero elements of vector φl
4 are,

 (l)φ4
3k+1 = -2 κl

4 ∑
s=1

k(n+1)-1

 [(1-ε) U(βl
s - (1-ε) βl

0) (βl
s - (1-ε) βl

0)] (B.39)

 (l)φ4
3k+1+i = 2 κl

4 U(βl
i - (1-ε) βl

0) (βl
i - (1-ε) βl

0) , i = 1, …., k(n+1)-1 (B.40)

B.2 Additional material for section 3.3

Estimating the autocovariance sequence of the stationary component process without

optimisation

As we show in sub-section 3.2 of the paper, the vector ζl has k(n+4) elements. This means,

that the number of the unknown parameters of the problem increases linearly with the number

 7

of elements of the autocovariance sequence of the stochastic process Ζl
i that we want to

preserve using nonlinear optimisation. This fact leads us to the conclusion that for large

values of n the optimisation problem would become extremely demanding due to the

computational time needed for the optimisation. For this particular case we have developed a

fast algorithm based on generalised inversion (Marlow, 1993, p. 263). After having estimated

the k(n+1)-1 (n≥1) elements of the autocovariance sequence (i.e. βl
0, βl

1, …, βl
k(n+1)-1) of the

stochastic process Yl
i for each location l using nonlinear optimisation, we can estimate the

next elements of the sequence (i.e. βl
k(n+1), …, βl

k(q+1)-1 , q≥n) by solving a linear system of q-n

equations with k(q-n) unknown parameters. Here, q+1 is the total number of elements of the

autocovariance sequence of the stochastic process Ζl
i for each location l that we wish to

preserve (i.e. Cov[Ζl
i, Ζl

i], Cov[Ζl
i, Ζl

i-1], …, Cov[Ζl
i, Ζl

i-q]), and n+1 is the number of Ζl
i

autocovariances preserved using optimisation (i.e. Cov[Ζl
i, Ζl

i], …, Cov[Ζl
i, Ζl

i-n]). The

algorithm that we developed gives us the advantage to minimize the number of the unknown

parameters that need to be optimised by defining the minimum n (n = 1). The linear system

that needs to be solved for each location l is given by the expression,

 cl βl = dl (B.41)

where cl
 is a matrix with dimensions (q-n) × k(q-n), βl = [βl

k(n+1), βl
k(n+1)+1, …, βl

k(q+1)-1]T is the

vector of the unknown autocovariances of the stochastic process Yl
i and dl is a vector with q-n

known elements. The non-zero elements of matrix cl can be obtained by equations,

 (l)c1, j = U(1-j)








 ∑
s=1

k

 (el
s)2 + U(j-2) U(k-j)









 ∑
s=1

k-j+1

 el
s el

s+j-1 , j = 1, …, k(q-n) (B.42)

 (l)ci, (i-2)k+r+1 = U(k-1-r)








 ∑
s=1

r

 el
s el

s+k-r + U(-|k-r|)








 ∑
s=1

k

 (el
s)2 + U(r-k-1)









 ∑
s=1

2k-r

 el
s el

s+r-k , i = 2, …, q-n; r = 1, …, 2k-1 (B.43)

 8

and the elements of vector dl can be obtained by equation,

 (l)d j = Cov[Zl
i, Zl

i-(n+j)] -U(1-j) ∑
r=1

k-1

















 ∑
s=1

k-r

 el
s el

s+r βkn+r , j = 1, …, q-n (B.44)

Following the algorithm of generalised inversion (Marlow, 1993, p. 263), at first we solve the

linear system,

 cl (cl) T λl = dl (B.45)

in order to obtain the vector λl for each location l and then estimate the vector βl
 using the

equation

 βl = (cl) T λl (B.46)

It can be easily shown that the matrix cl(cl) T is tridiagonal. In this case the linear system

(B.45) can be solved using the Thomas algorithm (Chapra et al., 2002, p. 286-287), which is a

very fast and easy algorithm for solving linear tridiagonal systems.

B.3 Additional material for section 3.4

Here we will study an algorithm for modifying a non-feasible autocovariance matrix to

feasible, which is applied to analytical estimation of SMA parameters. The SMA coefficients

al
j (j = 0, 1, …, k(q+1)-1) of each location l (l = 1, …, ν) can be estimated from the

autocovariance sequence (i.e. βl
0, βl

1, …, βl
k(q+1)-1) of the stochastic process Yl

i. If the

autocovariance matrix of Yl
i is feasible, then the SMA coefficients al

j of each location l can be

analytically estimated using equations (25), (26) and (27). If the autocovariance matrix of the

stochastic process Yl
i is not feasible then the constraint,

 sl
β(ω) ≥ 0 , ∀ ω Є [0, ½]; l = 1, …, ν (B.47)

needed by the expression (26), is not satisfied. In order to avoid nonlinear optimisation, which

is a time demanding procedure, we developed a simple algorithm that modifies the

 9

autocovariance sequence βl
p (p = 0, 1, …, k(q+1)-1) of each location l to another sequence βlp

(p = 0, 1, …, k(q+1)-1) that is slightly different from the sequence βl
p, obeys the constraint

(B.47) and eliminates the deviation of autocovariances βl0 and βl1 from the autocovariances βl
0

and βl
1 respectively. The later property of the algorithm seems to be extremely useful for the

Split model, as long as the autocovariances βl
0 and βl

1 of each location l affect not only the

annual variance and annual autocovariances of location l (equations (18) and (19))¸ but also

the seasonal variances and lag one seasonal autocovariances of each location l (equations (15)

and (17)). The algorithm has the following steps:

1) We estimate the power spectrum sl
β(ω) of the autocovariance sequence βl

p (p= 0, 1, …,

k(q+1)-1) of each location l.

2) We estimate the modified power spectrum sl
β(ω) of the autocovariance sequence βlp (p

= 0, 1, …, k(q+1)-1) of each location l using the expression

 sl
β(ω) = max{sl

β(ω), ε1} , ∀ ω Є [0, ½]; ε1 ≥ 0 (B.48)

where ε1 is a small positive number (e.g. ε1 = 0.001).

3) We estimate the modified autocovariance sequence βlp (p = 0, 1, …, k(q+1)-1) of each

location l (l = 1, …, ν) using Fourier transform,

 βlj = ⌡⌠
0

1/2

 sl
β(ω) cos(2πjω)dω , j= 0, 1, 2, …, k(q+1)-1 (B.49)

4) We replace the elements of the initial sequence βl
p (p = 2, …, k(q+1)-1) with the

corresponding elements of the obtained sequence βlp. The first two elements βl
0 and βl

1

are not changed in order not to affect the results of the first step of the estimation

algorithm.

 10

5) We repeat steps 1-4 until the deviation of autocovariances βl0 and βl1 from the

autocovariances βl
0 and βl

1 respectively is negligible (usually this requires up to three

iterations).

As we can observe at Figure B.1, the algorithm works well enough and the modifications

performed are very small.

0

1

2

3

4

5

6

0 10 20 30 40 50
lag

A
ut
oc
ov
ar
an
ce
s

initial autocovariance sequence
modified autocovariance sequence

Figure B.1 Initial and modified (by the algorithm) autocovariance sequence for the application of Split model to

the Boetikos Kephisos river flow (see paper)

B.4 Additional material for section 3.5

B.4.1 Objective function

We define the vector ψ containing (3k+1)ν2+(2k+1)ν unknown elements, which are

 ψ j = bl, r , l, r = 1, …, ν; j = (l-1)ν+r (B.50)

 ψ j = 0fs
l, r , l, r = 1, …, ν; s = 1, …, k; j = ν2(2s-1)+(l-1)ν+r (B.51)

 ψ j = 1fs
l, r , l, r = 1, …, ν; s = 1, …, k; j = 2sν2+(l-1)ν+r (B.52)

 ψ j = µ3[Rs
l] , l = 1, …, ν; s = 1, …, k; j = (2k+1)ν2+(s-1)ν+l (B.53)

 ψ j = µ3[Hl] , l = 1, …, ν; j = (2k+1)ν2+kν+l (B.54)

 ψ j = gs
l, r , l, r = 1, …, ν; s = 1, …, k; j = (2k+s)ν2+(k+l)ν+r (B.55)

 ψ j = µ3[Gs
l] , l = 1, …, ν; s = 1, …, k; j = (3k+1)ν2+(k+s)ν+l (B.56)

 11

We also define the vector θ4 with dimension kv(ν+1)/2 and the vectors θ5, θ6 with dimension

kν containing the statistical properties of the stochastic processes Xi
l, with elements

 θ4
j = Cov[Xs

l, Xs
r] , l, r = 1, …, ν; s = 1, …, k and

 j = (s-1)
v(ν+1)

2 +










∑
i=1

l-1

 (ν-i+1) + r – l + 1 (B.57)

 θ5
j = Cov[Xl

s, Xl
s-1] , l = 1, …, ν; s = 1, …, k; j = (s-1)ν+l (B.58)

 θ6
j = µ3[Xl

s] , l = 1, …, ν; s = 1, …, k; j = (s-1)ν+l (B.59)

In addition, we define the vectors θ4(ψ), θ5(ψ) and θ6(ψ) identically to vectors θ4, θ5, θ6. θ4(ψ),

θ5(ψ) and θ6(ψ) can be estimated from equations (29)-(35). In this case, the objective function

that we propose is,

 Φ(ψ*) = min[Φ(ψ)] = λ4║θ4(ψ) – θ4║2 + λ5║θ5(ψ) – θ5║2 + λ6║θ6(ψ) – θ6║2 +

 h5(ψ) + h6(ψ) (B.60)

where λ4, λ5 and λ6 are positive weighting factors and h5(ψ), h6(ψ) are penalty terms positively

valued if constraints (34), (37) and (38) are not satisfied. The value of the objective function

(B.60) will be zero in case that equations (29)-(35) and constraints (34), (37) and (38) are

satisfied simultaneously. Otherwise, the objective function will be positively valued. The term

h5(ψ) which ensures the holding of constraint (34) is,

 h5(ψ) = κ5 ∑
i=1

ν

 (u i, i-1)2 (B.61)

where κ5 is a positively valued penalty factor. The term h6(ψ) which ensures the holding of

constraints (37) and (38) is,

 h6(ψ) = κ6








∑
j=(2k+1)ν2+1

 (2k+1)ν2+(k+1)ν

 ηj + ∑
j=(3k+1)ν2+(k+1)ν+1

 (3k+1)ν2+(2k+1)ν

 ηj (B.62)

 12

 ηj = U[(ψ j)2-(ξmax)2] [(ψ j)2-(ξmax)2] (B.63)

where κ6 is a positively valued penalty factor.

B.3.2 Derivative of the objective function

In order to facilitate the minimization of function Φ(ψ), we derive the analytical expression of

its derivative with respect to vector ψ,

dΦ(ψ)

dψ = 2 λ4{θ4(ψ)-θ4}T p4 + 2 λ5{θ5(ψ)-θ5}T p5 + 2 λ6{θ6(ψ)-θ6}T p6 + φ5
T + φ6

T (B.64)

where p4 is a matrix with dimensions {kv(ν+1)/2}×{(3k+1)ν2+(2k+1)ν}, p5 and p6 are

matrices with dimensions kν×{(3k+1)ν2+(2k+1)ν} and φ5, φ6 are vectors with dimension

(3k+1)ν2+(2k+1)ν. The non-zero elements of matrix p4 are,

 p4
i, j

 = 2 bl, m










∑
t=-k(m+1)+1

k(m+1)-1
 (al

|t|)2 (el
s)2 , l = r; m = 1, …, ν; j = (l-1)ν+m (B.65)

 p4
i, j

 = 2 0fs
l, m , l = r; m = 1, …, ν; j = (2s-1)ν2+(l-1)ν+m (B.66)

 p4
i, j

 = 2 1fs
l, m , l = r; m = 1, …, ν; j = 2sν2+(l-1)ν+m (B.67)

 p4
i, j

 = 2 gs
l, m , l = r; m = 1, …, ν; j = (2k+s)ν2+(k+l)ν+m (B.68)

 p4
i, j

 = br, m










∑
t=-k(m+1)+1

k(m+1)-1
 al

|t| ar
|t| el

s er
s , l ≠ r; m = 1, …, ν; j = (l-1)ν+m (B.69)

 p4
i, j

 = bl, m










∑
t=-k(m+1)+1

k(m+1)-1
 al

|t| ar
|t| el

s er
s , l ≠ r; m = 1, …, ν; j = (r-1)ν+m (B.70)

 p4
i, j

 = 0fs
r, m , l ≠ r; m = 1, …, ν; j = (2s-1)ν2+(l-1)ν+m (B.71)

 p4
i, j

 = 0fs
l, m , l ≠ r; m = 1, …, ν; j = (2s-1)ν2+(r-1)ν+m (B.72)

 p4
i, j

 = 1fs
r, m , l ≠ r; m = 1, …, ν; j = 2sν2+(l-1)ν+m (B.73)

 13

 p4
i, j

 = 1fs
l, m , l ≠ r; m = 1, …, ν; j = 2sν2+(r-1)ν+m (B.74)

 p4
i, j

 = gs
r, m , l ≠ r; m = 1, …, ν; j = (2k+s)ν2+(k+l)ν+m (B.75)

 p4
i, j

 = gs
l, m , l ≠ r; m = 1, …, ν; j = (2k+s)ν2+(k+r)ν+m (B.76)

where,

 i = (s-1)
v(ν+1)

2 +










∑
t=1

l-1

 (ν-t+1) + r – l + 1 , l, r = 1, …, ν; s = 1, …, k (B.77)

The non-zero elements of matrix p5 are,

 p5
i, j

 = 2 bl, m










∑
t=-k(m+1)+1

k(m+1)-2
 al

|t| al
|t+1| el

k el
1 , s = 1 , m = 1, …, ν and j = (l-1)ν+m (B.78)

 p5
i, j

 = 1fk
l, m , s = 1 , m = 1, …, ν and j = ν2+(l-1)ν+m (B.79)

 p5
i, j

 = 0f1
l, m , s = 1 , m = 1, …, ν and j = 2kν2+(l-1)ν+m (B.80)

 p5
i, j

 = 2 bl, m










∑
t=-k(m+1)+1

k(m+1)-2
 al

|t| al
|t+1| el

s-1 el
s , s ≠ 1 , m = 1, …, ν and j = (l-1)ν+m (B.81)

 p5
i, j

 = 1fs-1
l, m , s ≠ 1 , m = 1, …, ν and j = (2s-1)ν2+(l-1)ν+m (B.82)

 p5
i, j

 = 0fs
l, m , s ≠ 1 , m = 1, …, ν and j = 2(s-1)ν2+(l-1)ν+m (B.83)

where,

 i = (s-1)ν+l , l = 1, …, ν , s = 1, …, k (B.84)

The non-zero elements of matrix p6 are,

 p6
i, j

 = 3 (bl, m)2 µ3[Hm]










∑
t=-k(m+1)+1

k(m+1)-1
 (al

|t|)3 (el
s)3 , m = 1, …, ν; j = (l-1)ν+m (B.85)

 p6
i, j

 = (bl, m)3











∑
t=-k(m+1)+1

k(m+1)-1
 (al

|t|)3 (el
s)3 , m = 1, …, ν; j = (2k+1)ν2+kν+m (B.86)

 14

 p6
i, j

 = 3 (gs
l, m)2 µ3[Gs

m] , m = 1, …, ν; j = (2k+s)ν2+(k+l)ν+m (B.87)

 p6
i, j

 = (gs
l, m)3 , m = 1, …, ν; j = (3k+1)ν2+(k+s)ν+m (B.88)

 p6
i, j

 = 3 (0fs
l, m)2 µ3[Rs

m] , m = 1, …, ν and j = (2s-1)ν2+(l-1)ν+m (89)

 p6
i, j

 = (0fs
l, m)3 , m = 1, …, ν; j = (2k+1)ν2+(s-1)ν+m (B.90)

 p6
i, j

 = 3 (1fs
l, m)2 µ3[Rm

s+1] , s ≠ k ; m = 1, …, ν; j = 2sν2+(l-1)ν+m (B.91)

 p6
i, j

 = (1fs
l, m)3 , s ≠ k ; m = 1, …, ν; j = (2k+1)ν2+sν+m (B.92)

 p6
i, j

 = 3 (1fk
l, m)2 µ3[R1

m] , s = k ; m = 1, …, ν; j = 2kν2+(l-1)ν+m (B.93)

 p6
i, j

 = (1fk
l, m)3 , s = k ; m = 1, …, ν; j = (2k+1)ν2+m (B.94)

where,

 i = (s-1)ν+l , l = 1, …, ν; s = 1, …, k (B.95)

The non-zero elements of vector φ5 are,

 φ5
j = 4 κ5 (ul, l-1) bl, m , l, m = 1, …, ν; j = (l-1)ν+m (B.96)

The non-zero elements of vector φ6 are,

 φ6
j = 2 κ6 ψ j U[(ψ j)2-(ξmax)2] (B.97)

where,

 j = (2k+1)ν2+1, …, (2k+1)ν2+(k+1)ν, (3k+1)ν2+(k+1)ν+1, …, (3k+1)ν2+(2k+1)ν (B.98)

References

Chapra, S.C. & Canale, R.P. (2002) Numerical Methods for Engineers, Fourth Edition,

McGraw-Hill, New York, U.S.A.

Marlow, W.H. (1993) Mathematics for Operations Research. Dover Publications, Mineola,

New York, U.S.A.

