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Introduction 

This report is an accompanying material of the paper “A stochastic methodology for 

generation of seasonal time series reproducing over year scaling”. Particularly, the 

mathematical derivations for the two stochastic hydrological models developed (i.e. MPAR-

SMAF and Split model) are presented in detail in this paper. In section A, a property of 

scaling stochastic processes, which forms the basis of the functioning structure of the MPAR-

SMAF model, is presented and proved. Section B includes the objective functions proposed 

for the nonlinear optimizations required by the Split model, the analytical expressions of their 

derivatives, as well as two algorithms developed particularly for Split model.  

A. MPAR-SMAF model 

We will derive a property of scaling stochastic processes, which is the basis of the MPAR-

SMAF model. Particularly, we will prove that the sum of two or more stationary stochastic 

processes with the same Hurst coefficient H is a stationary stochastic process with Hurst 

coefficient equal to the initial one. 

 If Qi is a stationary stochastic process where the subscript i denotes time, then the long-

term persistence of the stationary stochastic process Qi can be described by the equation  

 ( )Qi
(k) – kµq  =d 



k

λ  
H

 ( )Qj
(λ) – λµq     (A.1) 
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where =d denotes equality in distribution, Η is the Hurst coefficient of the stochastic process 

Qi, µq:= Ε[Qi] is the expected value of the stochastic process and Qi
(k) is the stochastic process 

defined as the sum of k sequential time terms of the stochastic process Qi, 

 Qi
(k) = ∑

j=(i-1)k+1

ik
 Qj     (A.2) 

Let the stochastic processes Pi and Pi
(k) be defined identically to the stochastic processes Qi 

and Qi
(k)and have the same Hurst coefficient H. In this case it is evident that  

 ( )Pi
(k) – kµp  =d 



k

λ  
H

 ( )Pj
(λ) – λµp     (A.3) 

holds. Adding, now, equations (A.1) and (A.3) we obtain  

 ( )Qi
(k) + Pi

(k) –  kµq –  kµp  =d 


k

λ  
H

 ( )Qj
(λ) + Pj

(λ) – λµq – λµp     (A.4) 

which denotes that if two stationary stochastic processes Qi, Pi with the same Hurst 

coefficient H are added, then the resulting stochastic process Qi + Pi is stationary with Hurst 

coefficient H equal to the initial one. It is evident, that the former proof can be generalised for 

more than two stationary stochastic processes. 

B. Multivariate Split model  

B.1 Additional material for section 3.2 

B.1.1  Objective function 

We group all the unknown parameters of each location l into the vector ζl which has k(n+4) 

elements, i.e. 

    ζl := [el
1, …, el

k, δl
1, 0, …, δl

k, 0, δl
1, 1, …, δl

k, 1, βl
0, βl

1, …, βl
k(n+1)-1]T ,  n ≥ 1; l = 1, …, ν (B.1) 
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We also group the statistical properties of the stochastic processes Xi
l and Zl

i into the 

following vectors 

 θl
1 := [Var[Xl

1], Var[Xl
2], …, Var[Xl

k]]T ,  l = 1, …, ν (B.2) 

 θl
2 := [Cov[Xl

k, Xl
1], Cov[Xl

1, Xl
2], …, Cov[Xl

k-1, Xl
k]]T ,  l = 1, …, ν   (B.3) 

 θl
3 := [Cov[Zl

i, Zl
i], Cov[Zl

i, Zl
i-1], …, Cov[Zl

i, Zl
i-n]]T

 ,  l = 1, …, ν    (B.4) 

and define the vectors θ1(ζl), θ2(ζl)  and θ3(ζl) identically to vectors θl
1, θl

2, θl
3. θ1(ζl), θ2(ζl)  

and θ3(ζl) can be estimated from equations (15), (17), (18) and (19). In this case, the objective 

function that we propose for each location l is, 

 J(ζl
*) = min[J(ζl)] = λl

1║θ1(ζl) - θl
1║2 + λl

2║θ2(ζl) – θl
2║2 + λl

3║θ3(ζl) – θl
3║2 +    

 h1(ζl) + h2(ζl) + h3(ζl) + h4(ζl) (B.5) 

where λl
1, λl

2 and λl
3 are positive weighting factors, ║.║ denotes the Euclidean norm of a 

vector and h1(ζl), h2(ζl), h3(ζl), h4(ζl) are penalty terms positively valued if constraints (20)-

(22) respectively are not satisfied. The value of (B.5) will be zero in case that equations (15), 

(17), (18) and (19) and constraints (20)-(22) are satisfied simultaneously. Otherwise the 

objective function will be positively valued. The term h1(ζl) which ensures the maintenance of 

constraint (20), is given by the equation, 

 h1(ζl) = κl
1 








 ∑
s=1

k

  ( )U(ε - δl
s, 0) (δl

s, 0 - ε)2   + U(ε - βl
0) (βl

0 - ε)2   (B.6) 

where κl
1 is a positively valued penalty factor and U(x) is Heaviside’s step function with U(x) 

= 1 if x ≥ 0 and U(x) = 0 otherwise. The term h2(ζl) ensures the maintenance of constraint (21) 

and it is given by the equation, 

 h2(ζl) = κl
2 ║θ4(ζl)║2 (B.7) 
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where κl
2 is a positively valued penalty factor and θ4(ζl) is a vector with k elements estimated 

by the expression, 

 (l)θ4 
j = U{(δl

j, 1)2 – (1-ε)2 δl
j, 0 δl

j-1, 0} {(δl
j, 1)2 – (1-ε)2 δl

j, 0 δl
j-1, 0} ,  j = 1, …, k (B.8) 

The terms h3(ζl) and h4(ζl) which ensure the maintenance of constraint (22), are given by the 

equations, 

 h3(ζl) = κl
3 ∑

j=1

k(n+1)-1

  ( )U(ε - βl
j) (βl

j - ε)2   (B.9) 

 h4(ζl) = κl
4 ∑

j=1

k(n+1)-1

  ( )U(βl
j - (1-ε) βl

0) (βl
j - (1-ε) βl

0)2   (B.10) 

where κl
3 and κl

4 are positively valued penalty factors. 

B.1.2  Derivative of the objective function 

The minimization of function J(ζl) is facilitated by knowing the analytical expression of its 

derivative with respect to vector ζl. After algebraic manipulations it can be shown that, 

 
dJ(ζl) 

dζl  = 2 λl
1{θ1(ζl)-θl

1}T pl
1 + 2 λl

2{θ2(ζl)-θl
2}T pl

2 + 2 λl
3{θ3(ζl)-θl

3}T pl
3 + φl

1
T +  

 2 κl
2 θ4(ζl)T pl

4 + φl
3

T + φl
4

T   (B.11) 

 where pl
1, pl

2 and pl
4 are matrices with dimensions k × k(n+4), pl

3 is a matrix with 

dimensions n+1 × k(n+4) and φl
1, φl

3, φl
4 are vectors with dimension k(n+4). 

 The non-zero elements of matrix pl
1 are, 

 (l)p1
i, i = 2 el

i βl
0 ,  i = 1, …, k (B.12)   

 (l)p1
i, i+k = 1 ,  i = 1, …, k (B.13)  

 (l)p1
i, 3k+1 = (el

i)2 ,  i = 1, …, k  (B.14) 

The non-zero elements of matrix pl
2 are, 
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 (l)p2
1, 1 = el

k βl
1 (B.15) 

 (l)p2
1, k = el

1 βl
1 (B.16)  

 (l)p2
1, 2k+1 = 1 (B.17)  

 (l)p2
1, 3k+2 = el

1 el
k (B.18)  

 (l)p2
i, i = el

i-1 βl
1 ,  i = 2, …, k (B.19)  

 (l)p2
i, i-1 = el

i βl
1 ,  i = 2, …, k (B.20) 

 (l)p2
i, i+2k = 1 ,  i = 2, …, k (B.21)  

 (l)p2
i, 3k+2 = el

i-1 el
i ,  i = 2, …, k (B.22) 

The non-zero elements of matrix pl
3 are, 

 (l)p3
1, j = 2 









 el
j βl

0 + 








 ∑
s=j+1

k

   el
s βl

s-j   + 








 ∑
s=1

j-1

   el
s βl

j-s    ,  j = 1, …, k (B.23)  

 (l)p3
1, j = 1 ,  j = k+1, …, 2k (B.24) 

 (l)p3
1, j = 2 ,  j =2k+2, …, 3k (B.25)  

 (l)p3
1, 3k+1 = ∑

s=1

k

   (el
s)2 (B.26) 

 (l)p3
1, j = ∑

s=1

4k-j+1

   el
s el

s+j-3k-1 ,  j =3k+2, …, 4k (B.27)  

 (l)p3
2, 2k+1 = 1 (B.28)  

 (l)p3
i, j = ∑

s=1

k

  {el
s (βl

k(i-1)+j-s + βl
k(i-1)-j+s)} ,   i = 2, …., n+1;  j = 1, …, k   (B.29) 

 (l)p3
i, k(i+1)+r+1 = U(k-1-r) 









 ∑
s=1

r

   el
s el

k+s-r   +U(-|k-r|) 








 ∑
s=1

k

   (el
s)2   + U(r-k-1)  
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







 ∑
s=r-k+1

k

   el
s el

s-r+k   ,  i = 2, …., n+1;  r = 1, …., 2k-1 (B.30) 

The non-zero elements of matrix pl
4 are, 

 (l)p4
1, k+1 = -(1-ε)2 δl

k, 0 (B.31)  

 (l)p4
i, k+i =  - (1-ε)2 δl

i-1, 0 ,  i = 2, …., k (B.32) 

   (l)p4
1, 2k = -(1-ε)2 δl

1, 0 (B.33)  

 (l)p4
i, k+i-1 = -(1-ε)2 δl

i, 0 ,  i = 2, …., k (B.34)  

 (l)p4
i, 2k+i = 2 δl

i, 1 ,  i = 1, …., k (B.35) 

The non-zero elements of vector φl
1 are, 

 (l)φ1
i+k = 2 κl

1 U(ε -  δl
i, 0) (δl

i, 0 - ε) ,  i = 1, …., k (B.36) 

 (l)φ1
3k+1 = 2 κl

1 U(ε -  βl
0) (βl

0 - ε) (B.37) 

The non-zero elements of vector φl
3 are, 

 (l)φ3
3k+1+i = 2 κl

3 U(ε -βl
i) (βl

i -ε) ,  i = 1, …., k(n+1)-1 (B.38) 

The non-zero elements of vector φl
4 are, 

 (l)φ4
3k+1 = -2 κl

4 ∑
s=1

k(n+1)-1

  [(1-ε) U(βl
s - (1-ε) βl

0) (βl
s - (1-ε) βl

0)] (B.39) 

 (l)φ4
3k+1+i = 2 κl

4 U(βl
i - (1-ε) βl

0) (βl
i - (1-ε) βl

0) ,  i = 1, …., k(n+1)-1 (B.40) 

B.2 Additional material for section 3.3 

Estimating the autocovariance sequence of the stationary component process without 

optimisation  

As we show in sub-section 3.2 of the paper, the vector ζl has k(n+4) elements. This means, 

that the number of the unknown parameters of the problem increases linearly with the number 
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of elements of the autocovariance sequence of the stochastic process Ζl
i that we want to 

preserve using nonlinear optimisation. This fact leads us to the conclusion that for large 

values of n the optimisation problem would become extremely demanding due to the 

computational time needed for the optimisation. For this particular case we have developed a 

fast algorithm based on generalised inversion (Marlow, 1993, p. 263). After having estimated 

the k(n+1)-1 (n≥1) elements of the autocovariance sequence (i.e. βl
0, βl

1, …, βl
k(n+1)-1) of the 

stochastic process Yl
i for each location l using nonlinear optimisation, we can estimate the 

next elements of the sequence (i.e. βl
k(n+1), …, βl

k(q+1)-1 , q≥n) by solving a linear system of q-n 

equations with k(q-n) unknown parameters. Here, q+1 is the total number of elements of the 

autocovariance sequence of the stochastic process Ζl
i for each location l that we wish to 

preserve (i.e. Cov[Ζl
i, Ζl

i], Cov[Ζl
i, Ζl

i-1], …, Cov[Ζl
i, Ζl

i-q]), and n+1 is the number of Ζl
i 

autocovariances preserved using optimisation (i.e. Cov[Ζl
i, Ζl

i], …, Cov[Ζl
i, Ζl

i-n]). The 

algorithm that we developed gives us the advantage to minimize the number of the unknown 

parameters that need to be optimised by defining the minimum n (n = 1). The linear system 

that needs to be solved for each location l is given by the expression, 

 cl βl = dl (B.41) 

where cl
 is a matrix with dimensions (q-n) × k(q-n), βl = [βl

k(n+1), βl
k(n+1)+1, …, βl

k(q+1)-1]T is the 

vector of the unknown autocovariances of the stochastic process Yl
i and dl is a vector with q-n 

known elements. The non-zero elements of matrix cl can be obtained by equations, 

 (l)c1, j = U(1-j) 








 ∑
s=1

k

  (el
s)2   + U(j-2) U(k-j) 









 ∑
s=1

k-j+1

  el
s el

s+j-1  ,  j = 1, …, k(q-n) (B.42) 

 (l)ci, (i-2)k+r+1 = U(k-1-r) 








 ∑
s=1

r

  el
s el

s+k-r  + U(-|k-r|) 








 ∑
s=1

k

  (el
s)2  + U(r-k-1)  

 








 ∑
s=1

2k-r

  el
s el

s+r-k  ,  i = 2, …, q-n;  r = 1, …, 2k-1  (B.43) 
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and the elements of vector dl can be obtained by equation, 

 (l)d j = Cov[Zl
i, Zl

i-(n+j)] -U(1-j) ∑
r=1

k-1

  








 








 ∑
s=1

k-r

  el
s el

s+r   βkn+r   ,  j = 1, …, q-n (B.44) 

Following the algorithm of generalised inversion (Marlow, 1993, p. 263), at first we solve the 

linear system, 

 cl (cl) T λl = dl (B.45) 

in order to obtain the vector λl for each location l and then estimate the vector βl
 using the 

equation  

 βl = (cl) T λl (B.46) 

It can be easily shown that the matrix cl(cl) T is tridiagonal. In this case the linear system 

(B.45) can be solved using the Thomas algorithm (Chapra et al., 2002, p. 286-287), which is a 

very fast and easy algorithm for solving linear tridiagonal systems. 

B.3 Additional material for section 3.4 

Here we will study an algorithm for modifying a non-feasible autocovariance matrix to 

feasible, which is applied to analytical estimation of SMA parameters. The SMA coefficients 

al
j (j = 0, 1, …, k(q+1)-1) of each location l (l = 1, …, ν) can be estimated from the 

autocovariance sequence (i.e. βl
0, βl

1, …, βl
k(q+1)-1) of the stochastic process Yl

i. If the 

autocovariance matrix of Yl
i is feasible, then the SMA coefficients al

j of each location l can be 

analytically estimated using equations (25), (26) and (27). If the autocovariance matrix of the 

stochastic process Yl
i is not feasible then the constraint,  

 sl
β(ω) ≥ 0 ,  ∀ ω Є [0, ½];  l = 1, …, ν  (B.47)  

needed by the expression (26), is not satisfied. In order to avoid nonlinear optimisation, which 

is a time demanding procedure, we developed a simple algorithm that modifies the 
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autocovariance sequence βl
p (p = 0, 1, …, k(q+1)-1) of each location l to another sequence βlp 

(p = 0, 1, …, k(q+1)-1) that is slightly different from the sequence βl
p, obeys the constraint 

(B.47) and eliminates the deviation of autocovariances βl0 and βl1 from the autocovariances βl
0 

and βl
1 respectively. The later property of the algorithm seems to be extremely useful for the 

Split model, as long as the autocovariances βl
0 and βl

1 of each location l affect not only the 

annual variance and annual autocovariances of location l (equations (18) and (19))¸ but also 

the seasonal variances and lag one seasonal autocovariances of each location l (equations (15) 

and (17)). The algorithm has the following steps: 

1) We estimate the power spectrum sl
β(ω) of the autocovariance sequence βl

p (p= 0, 1, …, 

k(q+1)-1) of each location l. 

2) We estimate the modified power spectrum sl
β(ω) of the autocovariance sequence βlp (p 

= 0, 1, …, k(q+1)-1) of each location l using the expression 

 sl
β(ω) = max{sl

β(ω), ε1} ,  ∀ ω Є [0, ½];  ε1 ≥ 0 (B.48) 

where ε1 is a small positive number (e.g. ε1 = 0.001). 

3) We estimate the modified autocovariance sequence βlp (p = 0, 1, …, k(q+1)-1) of each 

location l (l = 1, …, ν) using Fourier transform, 

 βlj = ⌡⌠
0

1/2

 sl
β(ω) cos(2πjω)dω   ,  j= 0, 1, 2, …, k(q+1)-1    (B.49) 

4) We replace the elements of the initial sequence βl
p (p = 2, …, k(q+1)-1) with the 

corresponding elements of the obtained sequence βlp. The first two elements βl
0 and βl

1 

are not changed in order not to affect the results of the first step of the estimation 

algorithm. 
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5) We repeat steps 1-4 until the deviation of autocovariances βl0 and βl1 from the 

autocovariances βl
0 and βl

1 respectively is negligible (usually this requires up to three 

iterations).  

As we can observe at Figure B.1, the algorithm works well enough and the modifications 

performed are very small. 
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modified autocovariance sequence

 
Figure B.1 Initial and modified (by the algorithm) autocovariance sequence for the application of Split model to 

the Boetikos Kephisos river flow (see paper) 

B.4 Additional material for section 3.5 

B.4.1 Objective function 

We define the vector ψ containing (3k+1)ν2+(2k+1)ν unknown elements, which are 

 ψ j = bl, r ,  l, r = 1, …, ν;  j = (l-1)ν+r (B.50) 

 ψ j = 0fs
l, r ,  l, r = 1, …, ν;  s = 1, …, k;  j = ν2(2s-1)+(l-1)ν+r (B.51) 

 ψ j = 1fs
l, r ,  l, r = 1, …, ν;  s = 1, …, k;  j = 2sν2+(l-1)ν+r (B.52) 

 ψ j = µ3[Rs
l]  ,  l = 1, …, ν;  s = 1, …, k;  j = (2k+1)ν2+(s-1)ν+l (B.53) 

 ψ j = µ3[Hl]  ,  l = 1, …, ν;  j = (2k+1)ν2+kν+l (B.54) 

 ψ j = gs
l, r ,  l, r = 1, …, ν;  s = 1, …, k;  j = (2k+s)ν2+(k+l)ν+r (B.55) 

 ψ j = µ3[Gs
l]  ,  l = 1, …, ν;  s = 1, …, k;  j = (3k+1)ν2+(k+s)ν+l (B.56) 
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We also define the vector θ4 with dimension kv(ν+1)/2 and the vectors θ5, θ6 with dimension 

kν containing the statistical properties of the stochastic processes Xi
l, with elements  

 θ4
j = Cov[Xs

l, Xs
r]  ,  l, r = 1, …, ν;  s = 1, …, k  and  

 j = (s-1) 
v(ν+1) 

2   + 










∑
i=1

l-1

  (ν-i+1)  + r – l + 1 (B.57) 

 θ5
j = Cov[Xl

s, Xl
s-1]  ,  l = 1, …, ν;  s = 1, …, k;  j = (s-1)ν+l (B.58) 

 θ6
j = µ3[Xl

s]  ,  l = 1, …, ν;  s = 1, …, k;  j = (s-1)ν+l (B.59) 

In addition, we define the vectors θ4(ψ), θ5(ψ) and θ6(ψ) identically to vectors θ4, θ5, θ6. θ4(ψ), 

θ5(ψ) and θ6(ψ) can be estimated from equations (29)-(35). In this case, the objective function 

that we propose is, 

 Φ(ψ*) = min[Φ(ψ)] = λ4║θ4(ψ) – θ4║2 + λ5║θ5(ψ) – θ5║2 + λ6║θ6(ψ) – θ6║2 +    

 h5(ψ) + h6(ψ)   (B.60) 

where λ4, λ5 and λ6 are positive weighting factors and h5(ψ), h6(ψ) are penalty terms positively 

valued if constraints (34), (37) and (38) are not satisfied. The value of the objective function 

(B.60) will be zero in case that equations (29)-(35) and constraints (34), (37) and (38) are 

satisfied simultaneously. Otherwise, the objective function will be positively valued. The term 

h5(ψ) which ensures the holding of constraint (34) is, 

 h5(ψ) = κ5 ∑
i=1

ν

  (u i, i-1)2 (B.61) 

where κ5 is a positively valued penalty factor. The term h6(ψ) which ensures the holding of 

constraints (37) and (38) is,  

 h6(ψ) = κ6 








∑
j=(2k+1)ν2+1

 (2k+1)ν2+(k+1)ν

  ηj + ∑
j=(3k+1)ν2+(k+1)ν+1

 (3k+1)ν2+(2k+1)ν

   ηj      (B.62) 
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 ηj = U[(ψ j)2-(ξmax)2] [(ψ j)2-(ξmax)2] (B.63) 

where κ6 is a positively valued penalty factor. 

B.3.2 Derivative of the objective function 

In order to facilitate the minimization of function Φ(ψ), we derive the analytical expression of 

its derivative with respect to vector ψ, 

      
dΦ(ψ) 

dψ  = 2 λ4{θ4(ψ)-θ4}T p4 + 2 λ5{θ5(ψ)-θ5}T p5 + 2 λ6{θ6(ψ)-θ6}T p6 + φ5
T + φ6

T   (B.64) 

where p4 is a matrix with dimensions {kv(ν+1)/2}×{(3k+1)ν2+(2k+1)ν}, p5 and p6 are 

matrices with dimensions kν×{(3k+1)ν2+(2k+1)ν} and φ5, φ6 are vectors with dimension 

(3k+1)ν2+(2k+1)ν. The non-zero elements of matrix p4 are, 

 p4
i, j

 = 2 bl, m 










∑
t=-k(m+1)+1

k(m+1)-1
 (al

|t|)2  (el
s)2 ,  l = r;  m = 1, …, ν;  j = (l-1)ν+m (B.65) 

 p4
i, j

 = 2 0fs
l, m ,  l = r;  m = 1, …, ν;  j = (2s-1)ν2+(l-1)ν+m (B.66) 

 p4
i, j

 = 2 1fs
l, m ,  l = r;  m = 1, …, ν;  j = 2sν2+(l-1)ν+m (B.67) 

 p4
i, j

 = 2 gs
l, m ,  l = r;  m = 1, …, ν;  j = (2k+s)ν2+(k+l)ν+m (B.68) 

 p4
i, j

 = br, m 










∑
t=-k(m+1)+1

k(m+1)-1
 al

|t| ar
|t|  el

s er
s ,  l ≠ r;  m = 1, …, ν;  j = (l-1)ν+m (B.69) 

 p4
i, j

 = bl, m 










∑
t=-k(m+1)+1

k(m+1)-1
 al

|t| ar
|t|  el

s er
s ,  l ≠ r;  m = 1, …, ν;  j = (r-1)ν+m (B.70) 

 p4
i, j

 = 0fs
r, m ,  l ≠ r;  m = 1, …, ν;  j = (2s-1)ν2+(l-1)ν+m (B.71) 

 p4
i, j

 = 0fs
l, m ,  l ≠ r;  m = 1, …, ν;  j = (2s-1)ν2+(r-1)ν+m (B.72) 

 p4
i, j

 = 1fs
r, m ,  l ≠ r;  m = 1, …, ν;  j = 2sν2+(l-1)ν+m (B.73) 
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 p4
i, j

 = 1fs
l, m ,  l ≠ r;  m = 1, …, ν;  j = 2sν2+(r-1)ν+m (B.74) 

 p4
i, j

 = gs
r, m ,  l ≠ r;  m = 1, …, ν;  j = (2k+s)ν2+(k+l)ν+m (B.75) 

 p4
i, j

 = gs
l, m ,  l ≠ r;  m = 1, …, ν;  j = (2k+s)ν2+(k+r)ν+m (B.76) 

where, 

   i = (s-1) 
v(ν+1) 

2   + 










∑
t=1

l-1

  (ν-t+1)  + r – l + 1 ,  l, r = 1, …, ν;  s = 1, …, k (B.77) 

The non-zero elements of matrix p5 are, 

 p5
i, j

 = 2 bl, m 










∑
t=-k(m+1)+1

k(m+1)-2
 al

|t| al
|t+1|  el

k el
1 ,  s = 1 ,  m = 1, …, ν and  j = (l-1)ν+m (B.78) 

 p5
i, j

 = 1fk
l, m  ,  s = 1  ,  m = 1, …, ν  and  j = ν2+(l-1)ν+m (B.79) 

 p5
i, j

 = 0f1
l, m  ,  s = 1  ,  m = 1, …, ν  and  j = 2kν2+(l-1)ν+m (B.80) 

 p5
i, j

 = 2 bl, m 










∑
t=-k(m+1)+1

k(m+1)-2
 al

|t| al
|t+1|  el

s-1 el
s  ,  s ≠ 1 ,  m = 1, …, ν and  j = (l-1)ν+m (B.81) 

 p5
i, j

 = 1fs-1
l, m  ,  s ≠ 1  ,  m = 1, …, ν  and  j = (2s-1)ν2+(l-1)ν+m (B.82) 

 p5
i, j

 = 0fs
l, m  ,  s ≠ 1  ,  m = 1, …, ν  and  j = 2(s-1)ν2+(l-1)ν+m (B.83) 

where,  

 i = (s-1)ν+l ,  l = 1, …, ν ,  s = 1, …, k (B.84) 

The non-zero elements of matrix p6 are,  

 p6
i, j

 = 3 (bl, m)2 µ3[Hm] 










∑
t=-k(m+1)+1

k(m+1)-1
 (al

|t|)3  (el
s)3 ,  m = 1, …, ν;  j = (l-1)ν+m (B.85) 

 p6
i, j

 = (bl, m)3 











∑
t=-k(m+1)+1

k(m+1)-1
 (al

|t|)3  (el
s)3 ,  m = 1, …, ν;  j = (2k+1)ν2+kν+m (B.86) 
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 p6
i, j

 = 3 (gs
l, m)2 µ3[Gs

m] ,  m = 1, …, ν;  j = (2k+s)ν2+(k+l)ν+m (B.87) 

 p6
i, j

 = (gs
l, m)3 ,  m = 1, …, ν;  j = (3k+1)ν2+(k+s)ν+m (B.88) 

 p6
i, j

 = 3 (0fs
l, m)2 µ3[Rs

m]  ,  m = 1, …, ν and  j = (2s-1)ν2+(l-1)ν+m (89) 

 p6
i, j

 = (0fs
l, m)3 ,  m = 1, …, ν;  j = (2k+1)ν2+(s-1)ν+m (B.90) 

 p6
i, j

 = 3 (1fs
l, m)2 µ3[Rm

s+1] ,  s ≠ k ;  m = 1, …, ν;  j = 2sν2+(l-1)ν+m (B.91) 

 p6
i, j

 = (1fs
l, m)3 ,  s ≠ k ;  m = 1, …, ν;  j = (2k+1)ν2+sν+m (B.92) 

 p6
i, j

 = 3 (1fk
l, m)2 µ3[R1

m] ,  s = k ;  m = 1, …, ν;  j = 2kν2+(l-1)ν+m (B.93) 

 p6
i, j

 = (1fk
l, m)3 ,  s = k ;  m = 1, …, ν;  j = (2k+1)ν2+m (B.94) 

where,  

 i = (s-1)ν+l ,  l = 1, …, ν;  s = 1, …, k   (B.95) 

The non-zero elements of vector φ5 are, 

 φ5 
j = 4 κ5 (ul, l-1) bl, m ,   l, m = 1, …, ν;  j = (l-1)ν+m (B.96) 

The non-zero elements of vector φ6 are, 

  φ6 
j = 2 κ6 ψ j U[(ψ j)2-(ξmax)2]  (B.97) 

where, 

  j = (2k+1)ν2+1, …, (2k+1)ν2+(k+1)ν, (3k+1)ν2+(k+1)ν+1, …, (3k+1)ν2+(2k+1)ν (B.98) 
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