
Ombrian curves
in a maximum entropy framework

S.M. Papalexiou and D. Koutsoyiannis

Department of Water Resources and Environmental Engineering
National Technical University of Athens

(www.itia.ntua.gr)

European Geosciences Union General Assembly 2008

Vienna, Austria, 13 18 April 2008

Session IS24: Precipitation: from measurement to modelling and
application in catchment hydrology



1. Abstract
Ombrian curves (from the Greek ombros, meaning rainfall) are most
widely known as rainfall intensity duration frequency (IDF) curves or
relationships. However, the former term may be preferable as the later is
inaccurate. Namely, frequency is meant to be return period whereas
duration is in fact the time scale on which the rainfall process is
averaged. Thus, ombrian relationships are nothing more than multiple
time scale expressions of the rainfall probability. Three important issues
regarding the mathematical form of the ombrian relationships are
examined: (a) whether or not the effects of time scale and return period
are separable so that the relationship could be written as the product of
two scalar functions; (b) whether or not the rainfall intensity is a power
function of return period and (c) whether or not the rainfall is a power
function of time scale. All these questions are investigated using the
principle of maximum entropy as a theoretical basis and a long rainfall
data set as an empirical basis. It turns out that none of the above
questions has a precisely positive answer, which makes the theoretical
derivation of ombrian curves a complicated task. For this reason,
consistent approximations are sought, which eventually do not depart
significantly from commonly used forms in engineering practice.



2. Ombrian relationships
• Ombrian relationships (or curves), mostly known as rainfall intensity

duration frequency (IDF) relationships, determine the rainfall intensity
i(k,T) averaged over time scale (not duration) k and exceeded on a return
period T.

• These relationships are rather empirical and generally have the form

i(k,T) = f (T) g(k), where f (T) and g(k) are mathematical functions whose

simplest and most common forms are f (T) = and g(k) = k . The

parameters , , are determined from the data.

• Clearly, these formulae imply: (a) a separable functional dependence of i
on T and k, (b) a power function of i vs. T, and (c) a power function of i
vs. k.

• In this study we try to investigate the validity of these three assumptions
based on probabilistic considerations and using the principle of
maximum entropy as a solid theoretical background.

• Additionally, we seek a statistical distribution based on theoretical
principles capable of describing rainfall on all time scales. This would be
the first step in constructing consistent ombrian relationships.



3. The data set
We have used a 70 year long hourly rainfall data set from the station of
National Observatory of Athens, Greece. The table presents statistics of
rainfall intensity averaged over several time scales.

Scale Length Missing Zeros Positive P Dry Mean StDev Cv Cs Ck Max

1 h 613632 29197 551718 32717 0.94 0.70 1.71 2.43 7.36 106.92 58.56

2 h 306816 14677 272376 19763 0.93 0.58 1.30 2.24 6.53 87.51 38.25

3 h 204544 9785 179907 14852 0.92 0.51 1.08 2.10 6.34 96.71 33.98

4 h 153408 7427 133313 12668 0.91 0.45 0.92 2.05 5.89 82.08 26.71

6 h 102272 4977 87226 10069 0.90 0.38 0.74 1.96 5.47 69.00 19.25

8 h 76704 3806 64267 8631 0.88 0.33 0.62 1.89 4.73 47.19 13.36

12 h 51136 2531 41774 6831 0.86 0.28 0.50 1.80 5.25 67.89 12.15

24 h 25568 1335 19194 5039 0.79 0.18 0.31 1.69 4.24 40.41 6.08

2.5 d 10028 592 6190 3246 0.66 0.11 0.17 1.51 3.61 25.67 2.39

3 d 8488 512 4955 3021 0.62 0.10 0.15 1.47 3.37 22.75 2.03

5 d 4988 343 2371 2274 0.51 0.08 0.11 1.38 3.24 20.17 1.20

6 d 4218 308 1825 2085 0.47 0.07 0.09 1.31 2.83 15.62 1.01

15 d 1628 169 385 1074 0.26 0.05 0.06 1.15 2.56 15.03 0.60

1 month 840 129 93 618 0.13 0.04 0.04 0.98 1.55 6.43 0.32

1.5 months 560 103 37 420 0.08 0.04 0.04 0.93 1.39 5.52 0.25

2 months 420 98 18 304 0.06 0.04 0.03 0.83 1.03 4.08 0.18

3 months 280 83 3 194 0.02 0.04 0.03 0.84 0.97 3.51 0.16

4 months 210 73 0 137 0.00 0.04 0.03 0.71 0.57 3.03 0.13

6 months 140 62 0 78 0.00 0.04 0.01 0.36 0.64 4.10 0.09

1 year 70 44 0 26 0.00 0.04 0.01 0.27 0.38 3.05 0.07



• The theoretical
relationship that
describes the
probability dry in
any time scale (k)
is given by

where p = p(1) and
and are

parameters.

4. Probability dry
• Ombrian relationships are closely related to the probability of a time

interval being dry, as this probability affects the average rainfall
intensity at different time scales k (particularly the moderate ones).

• The variation of probability dry with time scale has been investigated
elsewhere (Koutsoyiannis, 2006) based on maximum entropy theoretical
considerations.
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A generalization of the BGS entropy,
effectively used in numerous scientific
disciplines and also valuable in hydrology
has been proposed by Tsallis (1988, 2004):

with q = 1 corresponding to the BGS entropy.

Maximization of Tsallis entropy with known
and 2 yields an over exponential (power

type) distribution,

f(x) = [1 + ( 0 + 1 x + 2 x
2)] –1 – 1/ , x 0 (2)

where 0, 1, 2 parameters and := (1 – q)/q.

The truncated normal distribution fails to
describe cases in which the variation / > 1,
and, as high variation is common in
hydrological variables at fine time scales, this
is an indication of the applicability of Tsallis
entropy in hydrology (Koutsoyiannis, 2005).

5. Entropy maximization and marginal distributions

The Boltzmann Gibbs Shannon (BGS)
entropy for a continuous random
variable X with density function f(x) is
by definition (e.g. Shannon, 1949;
Papoulis, 1991)

Maximization of BGS entropy with
simple constraints of known mean
and variance 2 and the non negativity
constraint results in

f(x) = exp(– 0 – 1 x – 2 x
2), x 0 (1)

where 0, 1 and 2 are parameters
depending on the known mean and
variance. Inspection of (1) shows that it
is none other than the truncated
normal density function.
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6. A stepwise entropy maximization approach
• Let Xi (Xi 0), denote the rainfall rate at time i discretized at a fine time scale

(tending to zero) and let us assume that it has a specified mean .

• Maximization of BGS entropy with constraints Xi 0 and

results in the exponential distribution: f(x) = exp(–x/ )/ .

• In addition, let us assume that there is some time dependence of Xi, quantified by
E[Xi Xi + 1] = ; this will introduce an additional constraint for the multivariate
distribution

Here is the correlation coefficient ( > 0) and is the standard deviation
(for the exponential distribution = and thus = 2 + 2 = ( + 1) 2 > 2).

• The constant mean constraint in rainfall modelling does not result from a natural
principle and although it is reasonable to assume a specific mean rainfall, we can
allow this to vary in time.

• In this case we can assume that the mean at time i is the realization of a random
processMiwhich has mean and lag 1 autocorrelation M > .

• Application of the ME principle will produce thatMi is Markovian with exponential
distribution.

• Then application of conditional distribution algebra results in

f(x) = 2 K0(2 (x/ )1/2)/ , F(x) = 1 – 2 (x/ )1/2 K1(2 (x/ )1/2)/

where Kn(x) is the modified Bessel function of the second kind (important
observation: f(0) = , whereas in the exponential distribution f(0) = < ).

[ ] = 
–

x f(x) dx = µ

[ i Xi + 1] = 
– –

 xi xi + 1 f(xi, xi + 1) dxi dxi + 1 =  = 
2
 + µ

2



7. A rainfall distribution for all time scales
• Extensive application of the Tsallis distribution (in this study) showed that it fails to

simultaneously describe both tails of the empirical probability distribution. It seems
that the density fX(x) of a distribution appropriate to describe rainfall on small time
scales, should tend to infinity as x tends to 0, thus achieving a good fit in the region
near 0. This basic characteristic is theoretically consistent with the stepwise entropy
maximization approach (see panel 6 and Koutsoyiannis, 2008).

• We propose here as a rainfall distribution for all time scales a generalization of the
beta prime distribution; this has been called in Koutsoyiannis (2005) the Power
transformed Beta Prime distribution. Here it is referred to as the JH distribution.
While the JH distribution does not result from entropy maximization with simple
constrains, it is consistent with two essential features theoretically derived from
entropy maximization: (a) it is a power type distribution and (b) fX(x) as x 0 .

• The probability density function and the distribution function of the JH distribution
are:
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8. The JH distribution in action
The JH distribution performed exceptionally well as the following figures attest for time
scales from 1 h to 1 year (~4 orders of magnitude). Asymptotically (for 3 > 0) the
distribution behaves as x ( 1 + 2 3) (for our data set x ( 1 + 2 3) x 7.66).
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9. Are the effects of time scale and return period
separable?

• If i(k,T) = f (T) g(k) then for two different time scales k1, k2:

i(k1,T) = f (T) g(k1), i(k2,T) = f (T) g(k2) i(k1,T)/ i(k2,T) = g(k1) / g(k2), i.e.
independent of T, or

ln i(k1,T) – ln i(k2,T) = ln g(k1) – ln g(k2) = h(k1, k2), i.e. independent of T.

• The final equation represents a simple translation in terms of time scale
k, the same for any return period T.

• The figure in panel 10 shows that this does not hold true (the distances of
two curves for specified k1, k2 increase with the decrease of T).

• Therefore the answer is negative, except in high return periods (green
area).

In a translation (as above):

d1 = d2

d1

d2

k2

k1

ln T2ln T1
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10. Is rainfall a power function of return period?
No, except in high return periods (green area).

The time scales for the curves depicted from red to brown are 

a) 1, 2, 3, 4, 6, 8, 12  h

b) 1, 3, 6, 15 d

c) 1, 1.5, 2, 3, 6, 12 months
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11. Is rainfall is a power function of time scale?
• To study this question, we have constructed double logarithmic plots of rainfall

intensity i vs. time scale k for several values of return period T.

• The diagram shows that a power law is a good approximation – but not perfect in
either of the two ends.

• A general relationship with better fit, produced by maximum entropy considerations
(Koutsoyiannis, 2006) is:

where , , and
p < 1 are parameters

• For small time scales
this can be approxi
mated as:
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12. Conclusions and discussion
• Maximum entropy considerations help to construct a probabilistic model (the

JH distribution) with an impressively good fit to rainfall intensity data for
times scales ranging from hourly to yearly (a range of 4 orders of magnitude).

• The model and the data show that common assumptions in empirical ombrian
relationships, i.e., (a) a separable functional dependence of the rainfall
intensity i on the return period T and time scale k, (b) a power function of i vs.
T, and (c) a power function of i vs. k, are not verified theoretically.

• However, for moderate and large return periods, these assumptions provide a
very good approximation and justify the wide use of these assumptions in the
engineering practice (i = T / k ).

• Better yet simple ombrian relationships can be derived with approximating
the consistent distribution function with the Pareto distribution and also
exploiting the generalized dependence of intensity with duration (slide 11); in
this case a better approximation is i = (T – ) / (k + ) .
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