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Abstract The well-established physical and mathematical principle of maximum 
entropy (ME), is used to explain the distributional and autocorrelation properties of 
hydrological processes, including the scaling behaviour both in state and in time. In 
this context, maximum entropy is interpreted as maximum uncertainty. The conditions 
used for the maximization of entropy are as simple as possible, i.e. that hydrological 
processes are non-negative with specified coefficients of variation and lag-one 
autocorrelation. In the first part of the study, the marginal distributional properties of 
hydrological processes and the state scaling behaviour were investigated. This second 
part of the study is devoted to joint distributional properties of hydrological processes. 
Specifically, it investigates the time dependence structure that may result from the ME 
principle and shows that the time scaling behaviour (or the Hurst phenomenon) may 
be obtained by this principle under the additional general condition that all time scales 
are of equal importance for the application of the ME principle. The omnipresence of 
the time scaling behaviour in numerous long hydrological time series examined in the 
literature (one of which is used here as an example), validates the applicability of the 
ME principle, thus emphasizing the dominance of uncertainty in hydrological 
processes. 
Key words entropy; fractional Gaussian noise; Hurst phenomenon; hydrological persistence; 
hydrological prediction; hydrological statistics; long-range dependence; power laws; risk; 
scaling; uncertainty 

Incertitude, entropie, effet d’échelle et propriétés stochastiques 
hydrologiques. 2. Dépendance temporelle des processus 
hydrologiques et échelle temporelle 
Résumé  Le principe bien établi, à la fois physique et mathématique, de l’entropie 
maximale (EM) est employé pour expliquer les propriétés de distribution et 
d’autocorrélation des processus hydrologiques, y compris le comportement d’échelle 
dans l’état et dans le temps. Dans ce contexte, l’entropie maximale est interprétée en 
tant qu’incertitude maximale. Les conditions utilisées pour la maximisation de 
l’entropie sont le plus simples possible: les processus hydrologiques sont non négatifs 
avec des coefficients de variation (CV) et d’autocorrélation fixés. Les propriétés 
distributionnelles marginales des variables hydrologiques et le comportement 
d’échelle d’état ont été étudiés dans la première partie de cette étude. Cette deuxième 
partie de l’étude est consacrée aux propriétés distributionnelles communes des 
processus hydrologiques. Spécifiquement, on étudie la structure de dépendance 
temporelle qui peut résulter du principe de l’EM et on montre que le comportement 
d’échelle de temps (ou le phénomène de Hurst) peut être obtenu par ce principe sous 
la condition générale additionnelle que toutes les échelles de temps sont d’égale 
importance pour l’application du principe de l’EM. L’omniprésence du comportement 
d’échelle de temps dans les nombreuses longues séries hydrologiques temporelles 
examinées dans la littérature (dont une est employée ici comme exemple), valide 
l’applicabilité du principe de l’EM, ce qui souligne le caractère dominant de 
l’incertitude dans les processus hydrologiques.  
Mots clefs entropie; bruit fractionnel gaussien; phénomène de Hurst; persistance hydrologique; 
prévision hydrologique; statistiques hydrologiques; dépendance à longue portée; lois puissance; 
risque; effet d’échelle; incertitude 
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INTRODUCTION 
 
Prediction is very difficult, especially of the future.  
Niels Bohr 
 
In the first part of this study (Koutsoyiannis, 2005b), it is shown that the principle of 
maximum entropy (ME) can explain the statistical distributions of hydrological 
variables. In this context, maximum entropy is interpreted as maximum uncertainty, 
given that, in the theory of stochastic processes, entropy is a measure of uncertainty or 
ignorance (e.g. Papoulis, 1991, p. 533). This second part of the study is devoted to 
joint distributional properties of hydrological processes. Specifically, it investigates the 
time dependence structure that may result from the ME principle and attempts to 
explain, based on this principle, the time scaling behaviour, which was observed in 
many long hydrological and meteorological time series. 
 To define the time scaling property, a stationary stochastic process Xi on discrete 
time i is considered, from which the time averaged process X

 (k)
i  is formed by averaging 

k consecutive Xl , i.e.: 

X
 (k)
i  := 

1
k �

l = (i–1)k+1

i k

 Xl (1) 

where k = 1, 2, …, denotes time scale (obviously, X
 (1)
i  ≡ Xi). The time scaling is 

expressed by the following equation, relating the distributional properties of the time 
averaged process X

 (k)
i  at scale k to those of Xi at the basic scale 1: 

(X
 (k)
i  – µ) =

d
 kH–1(Xi – µ) (2) 

where the symbol =
d
 stands for equality in distribution, µ is the mean of the process and 

H is a positive constant known as the Hurst coefficient (or exponent) (where 0.5 ≤ H < 
1; values H < 0.5 are mathematically feasible but physically unrealistic, see e.g. 
Koutsoyiannis, 2002a). This time scaling property expresses a behaviour according to 
which the distribution function of a process does not change with scaling of the time 
scale by an integer k, except for a multiplicative factor which is a power law of the 
scaling factor k. A process exhibiting properties (2) can be called a simple scaling 
stochastic process (SSS process). 
 This behaviour is usually validated for the second-order properties of the process. 
In this case, (2) is replaced by the following set of equations (adapted from 
Koutsoyiannis, 2002a):  

σ(k) = kH–1 σ,      ρ
(k)
j  = ρj ≈ H(2H – 1) |j|2H–2    (3) 

γ(k)
j  ≈ H(2H – 1) σ2 k2H–2 |j|2H–2,      s(k)(ω) ≈ 4(1 – H) σ2k2H–2 (2ω)1–2H  

where σ(k) and σ denote the standard deviation at scales k and 1 respectively; ρ(k)
j  

denotes the lag j autocorrelation at scale k, and is independent of the scale (thus equal 
to ρj of scale 1); γ(k)

j  denotes the lag j autocovariance at scale k (with γ(k)
0  ≡ [σ(k)]2); 

s(k)(ω) denotes the power spectrum of the process at scale k and frequency ω. All 



Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence 
 
 

 
 

Copyright  2005 IAHS Press  

407

equations of the set (3) are of power type, all are virtually equivalent to one another 
and all express one single property, the time scaling. The second and third equations of 
this set are given in an approximate form (which is good except for |j| = 0 and 1) 
emphasizing the power law behaviour of autocorrelation (the exact relationship for ρ(k)

j  
is given in equation (20)).  
 The terms “Hurst phenomenon” (due to Hurst, 1951, who first observed this 
behaviour), “Joseph effect” (due to Mandelbrot, 1977, from the known biblical story) 
and long-range (or long-term) dependence or persistence (due to the implied high 
autocorrelations for high lags) have been used as alternative names for the same 
behaviour. Since its discovery, the scaling behaviour has been identified in several 
hydrological time series such as (to mention a few of the more recent studies) flows of 
several rivers such as the Nile (Eltahir, 1996; Koutsoyiannis, 2002a), the Warta, 
Poland (Radziejewski & Kundzewicz, 1997), the Boeoticos Kephisos, Greece 
(Koutsoyiannis, 2003a,b), the Nemunas, Lithuania (Sakalauskienė, 2003), rivers in 
Canada (Yue & Gan, 2004); and inflows of Lake Maggiore, Italy (Montanari et al., 
1997). It was also identified in other climatological time series including wind power 
(Haslett & Raftery, 1989); global or point mean temperatures (Bloomfield, 1992; 
Koscielny-Bunde et al., 1998; Koutsoyiannis, 2003a; Maraun et al., 2004); indexes of 
North Atlantic Oscillation (Stephenson et al., 2000); and tree-ring widths, which are 
indicators of past climate (Koutsoyiannis, 2002a).  
 Even though the investigation of another time series, additional to those of the 
previous paragraph, may be redundant and not an important addition to the literature, 
in order for the paper to be self-contained a simple real world example is given here. 
This deals with the longest of the time series already examined in the first part of the 
study and simultaneously one of the longest instrumental records worldwide—the time 
series of the mean annual temperature of Geneva with length of 228 years. Plots of the 
time series on scales 1, 5 and 25 are given in Fig. 1(a). Using classical statistical 
estimators, the mean of the process is 282.8 K, the standard deviation 0.67 K and the 
lag-one autocorrelation coefficient 0.33. For comparison, a synthetic series with these 
statistics was generated from the autoregressive process of order 1 (AR(1) or Markov, 
whose details will be given later) and was plotted in Fig. 1(b). It is observed that the 
fluctuations of the processes, especially for the 25-year time scale, are much greater in 
the real-world time series than in the synthetic series, which does not exhibit scaling 
behaviour. Thus, the significant fluctuations in a time series on large scales gives a 
first sign of the scaling behaviour.  
 A clearer depiction of the scaling behaviour can be done by utilizing the first of 
equations (3), which calls for a double logarithmic plot of standard deviation σ(k) 
versus time scale k. In such a plot, the Hurst behaviour is manifested as a straight-line 
arrangement of points corresponding to different time scales, whose slope is H – 1. 
The plot for the Geneva temperature series for scales k = 1 to 20 is depicted in Fig. 2. 
The empirical standard deviations were estimated by two methods, the classical 
statistical estimator and an estimator appropriate for SSS processes (Koutsoyiannis, 
2003a). The second one increases the standard deviation at the basic scale 1 from 
0.67 K to 0.71 K. This shows that even the estimation of marginal statistical properties 
of a hydrological variable cannot be separated from the study of its correlation in time 
and thus hydrological statistics should be incorporated in a unifying framework of  
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Fig. 1 Plot of (a) the mean annual temperature of Geneva and, for comparison, (b) a 
synthetic series generated from a Markovian process with statistics same with those of 
the mean annual temperature of Geneva. 
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Fig. 2 Logarithmic plot of standard deviation vs scale for the time series of the annual 
temperature of Geneva.  
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Fig. 3 (a) Autocorrelation coefficient vs. lag for time scale 1 and (b) lag-one 
autocorrelation coefficient vs time scale for the time series of the annual temperature 
of Geneva. 

 
 
hydrological stochastics. In addition, the theoretical standard deviations σ(k) for two 
models, the SSS and the Markov, have been plotted in Fig. 2. Clearly, the empirical 
estimates of standard deviation depart significantly from the Markov model and are 
close to the SSS model. The average slope of the arrangement of points of empirical 
estimates on the logarithmic diagram is –0.2, which means that the Hurst coefficient is 0.8. 
 Another depiction of the scaling behaviour is provided in Fig. 3, based on the 
second of equations (3). Figure 3(a) depicts the empirical autocorrelation functions, 
again estimated by two estimators, the classical and an SSS-consistent (Koutsoyiannis, 
2003a). The two theoretical autocorrelation functions for the SSS and Markov models 
are also plotted. Again the diagram shows that empirical plots are close to the SSS 
model and very far from the Markov model. This confirms the scaling behaviour of the 
time series. In addition, Fig. 3(b) depicts the lag-one autocorrelation coefficient ρ(k)

1  
versus scale k. In an SSS process, ρ(k)

1  does not vary with scale (ρ(k)
1  = ρ1, as shown in 

(3)), whereas in a Markov process it is a decreasing function of scale, plotted in 
Fig. 3(b). Clearly, the empirical estimates of lag-one autocorrelation for scales 1–20 
indicate that it is not a decreasing function of time scale (i.e. even for a 20-year time 
scale it keeps virtually the same value as in the annual time scale); again, this confirms 
the scaling behaviour. 
 The omnipresence of the Hurst phenomenon in hydrological (and other 
geophysical, technological and socio-economic) time series has intrigued many to call 
it a mysterious phenomenon, others to “conjure it away” (to quote Klemeš, 1974) and 
others to propose explanations of the mechanisms that might generate it. Synopsis of 
older explanations and a couple of two more recent ones are given in Koutsoyiannis 
(2002a, 2005a,c). Generally, these explanations provide conditions under which the 
scaling behaviour might emerge, but they do not explain why these conditions are so 
common in nature that make the scaling behaviour be the rule rather than the 
exception.  
 In this respect, it is endeavoured in this study to link the scaling behaviour with the 
ME principle. The idea is that if the ME principle can result in a process with scaling 
behaviour, then this can be regarded as a sufficient reason for its ubiquity.  
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THE ENTROPY CONCEPT 
 
A detailed presentation of the entropy concept including definitions and generaliza-
tions are given in the first part of the study (Koutsoyiannis, 2005b). Here the elements 
required to study the dependence structure of a stochastic process that might represent 
a hydrological process are summarized and also extended to cover the notion of a 
stochastic process. 
 For a continuous random variable X taking values x with probability density 
function f(x) satisfying: 

��
–∞

∞

 f(x) dx = 1  (4) 

the (Shannon or extensive) entropy is by definition (e.g. Papoulis, 1991, p. 559): 

φ := Ε[–ln f(Χ)] = –��
–∞

∞

 f(x) ln f(x) dx   (5) 

 If the density f(x) is defined in the interval (a, b) then application of the ME 
principle results in the uniform distribution in (a, b). If any of a and b tends to ±∞, the 
ME principle cannot be applied unless additional constraints are imposed. The most 
common ones, which are also used in this paper, are the requirements for finite first 
and second moments, i.e.: 

Ε[Χ] = ��
–∞

∞

 x f(x) dx = µ1 ≡ µ  (6) 

Ε[Χ 2] = ��
–∞

∞

 x2 f(x) dx = µ2  (7) 

 Application of the ME principle with constraints (4), (6) and (7) results in the 
normal distribution (e.g. Papoulis, 1991, p. 571; Dowson & Wragg, 1973; Tagliani, 
1993, 2002a, b) with mean µ and variance σ2 = µ2 – µ2. The maximized entropy is:  

φ = ln(σ 2πe) (8) 
This shows that the entropy of a normally distributed variable depends only on its 
standard deviation, not on its mean. As discussed in detail in the first part, the fact that 
hydrological variables are non-negative (x ≥ 0) implies that the ME distribution is the 
truncated normal distribution, in which the entropy depends on both µ and σ. 
Furthermore, if the variation is very high, i.e. σ/µ > 1, then the (extensive) ME 
distribution does not exist. However, a generalization of the extensive entropy concept 
enables, even in this case, derivation of the ME distribution, which turns out to be 
power-type (Pareto). In the limiting case σ/µ → 0, the truncated normal distribution 
becomes identical to the normal distribution whereas in the limiting case σ/µ = 1 both 
the truncated normal and the Pareto distributions are identical to the exponential 
distribution.  
 The case studies of the first part showed that temperature exhibits very low 
variation, even at small time scales, and thus follows virtually normal distribution at all 
time scales; in contrast, rainfall and runoff at small time scales (e.g. hourly, daily) 
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exhibit high variation and thus follow Pareto distributions. As time scale becomes 
larger, the variation becomes lower and the ME distribution tends to be the normal 
distribution. In this paper it is assumed that time scales are not finer than annual and 
thus the normal distribution is a good approximation of the ME distribution for all 
processes of interest; thus no other distributions except normal are examined in this 
paper. This simplifies calculations as the normal distribution is preserved in aggregate 
time scales and, besides, the multivariate distributions, either unconditional or condi-
tional, are normal too. The annual scale allows also the convenient hypothesis of 
stationarity, which was already mentioned; had the basic scale been shorter than 
annual, such a hypothesis would not be plausible due to sub-annual periodicity of 
hydrological phenomena. In some cases, over-annual periodicities have been observed 
in natural phenomena, due to the 11-year sunspot cycle, or to the periodicity of El Niño 
and La Niña anomalies (e.g. Tomasino et al., 2004). The stationarity assumption and 
the subsequent analysis may not be applicable in such cases, unless the process is 
appropriately transformed to remove periodicity.  
 With the notational convenience already described in the Introduction, the basic 
scale k = 1 is assumed to be the annual scale, so Xi represents the annual value at 
discrete time (year) i. Further, it is assumed that time i = 0 represents the present, time 
i = 1, 2, … represents the future and time i = –1, –2, … represents the past. The 
stationary process Xi is determined in terms of its nth order joint distribution function 
F(xn) or the density f(xn) defined as 

F(xn) := P{Xn ≤ xn},   f(xn) = 
∂nF(xn)
∂x1 

…
 ∂xn

,    xn = (x1, …, xn),    Xn = (X1, …, Xn) (9) 

where upper- and lower-case symbols denote respectively random variables and their 
values and P{ } denotes probability. The nth order joint entropy is defined as 
(Papoulis, 1991): 

φn := Ε[–ln f(Χn)] = –��
Dn

 

 f(xn) ln f(xn) dxn   (10) 

where Dn is the n-dimensional space. φn can be interpreted as the uncertainty about the 
variables x1, …, xn and equals the information gained when they are observed.  
 The conditional entropy of order m of the process Xi is defined as (Papoulis, 
1991): 

φcm := Ε[–ln f(Χ1|X0, …, X–m+1)]  (11) 

where f(Χ1|X0, …, X–m+1) denotes the conditional density of Χ1 given X0, …, X–m+1. The 
limit as m tends to infinity (i.e. the conditional entropy when the entire past is 
observed) is called simply the conditional entropy φc, i.e.:  

φc := limm→∞ Ε[–ln f(Χ1|X0, …, X–m+1)]   (12) 

The difference of unconditional and conditional entropies, i.e.: 

φ – φc =: ψ (13) 

is a non-negative number that represents the information gain when past and present 
are observed.  
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 In the case that the process Χi is Gaussian, which is of interest here, the joint 
entropy of order n and the conditional entropy are given as (Papoulis, 1991, pp. 564 & 
568): 

φn = ln (2 π e)n δn,     φc := limm→∞ φcm,     φcm = ln 2 π e δm+1/δm (14) 

where δn is the determinant of the covariance matrix cn defined as:  

cn := cov[Χn, Χn] = 

�
�
�
�

�
�
�
�γ0 � γn–1

� � �

 γn–1 �  γ0

  (15) 

 Application of the ME principle in a multivariate setting can be done by 
maximizing either φn (for any n) or φc. In both cases, maximization of entropy with 
constraints (4), (6) and (7) results in a process Xi that is Gaussian white noise, i.e. all Xi 
are independent variables with Gaussian distribution with mean µ and variance σ2 ≡ γ0 
= µ2 – µ2 (Papoulis, 1991, p. 576). This, however, is a trivial case. The situation 
becomes more interesting and closer to the nature of hydrological processes if 
temporal dependence of the process is assumed. In the simplest case, the dependence 
can be described by postulating a positive lag-one autocovariance γ1 ≡ ρ γ0 (where ρ ≡ 
ρ1 is the lag-one autocorrelation), so that an additional constraint is imposed:  

Ε[Χi Xi + 1] = ��
–∞

∞

 xi xi+1 f(xi, xi+1) dxi dxi+1 = γ1 + µ2  (16) 

Under this additional constraint, the ME principle results in a process Xi that is 
Gaussian and Markovian (Papoulis, 1991, p. 577).  
 Thus, if nothing is known about the dependence of a process, then the ME 
principle results in a Gaussian white noise and if the consecutive variables are 
correlated then the same principle results in a Markovian Gaussian process. However, 
to obtain these results only the basic time scale, the annual scale, was considered. One 
may think that the uncertainty should be considered in other time scales, as well, since 
there is no reason to assume that the annual time scale is unique or more important in 
nature than other scales are. Thus, the ME principle should be combined with a 
postulate of importance of all time scales. In this case the application becomes much 
more difficult. Seeking to express this postulate formally and to couple it to the ME 
principle, a heuristic stepwise approach will be followed in the next sections.   
 Here, it should be noted that if the covariance function γj is defined at the basic 
time scale, then the covariance γ(k)

j  at any scale k is completely determined in terms of 
γj from the following equation, which is a consequence of (1): 

γ(k)
j  = 

1
k �

i=–k+1

k–1
 γj k+i ��

�
�
�
�1 – 

|i|
k   (17) 

 
 
BENCHMARK PROCESSES AND INITIAL OBSERVATIONS 
 
Before attempting to apply the ME principle in a multivariate and multiple time-scale 
setting, it is interesting to examine some of the simplest typical stochastic processes. 
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Four such processes are examined in this section and are also used in subsequent 
sections as sort of “benchmark” processes. These are the already mentioned Markovian 
(AR(1)) process, the also mentioned SSS process, which, combined with the normality 
assumption, is identical to the fractional Gaussian noise (FGN; e.g. Koutsoyiannis, 
2002a, 2003a), the moving average process (MA), which implies the least possible 
autocorrelation, and a process with the highest autocorrelation which will be called the 
grey noise (GN).  
 In the Markovian or AR(1) process at the basic scale k = 1, the autocorrelation is: 

ρj = ρ|j|  (18) 
The unconditional entropy is given by (8) whilst the conditional entropy and the 
information gain are respectively:  

φc = ln[σ 2 π e (1 – ρ2)],     ψ = –ln 1 – ρ2 (19) 

At aggregate scales, the autocorrelation and the entropy expressions become more 
complicated (the process is no longer AR(1)). Thus, analytical expressions are not 
convenient and numerical calculations based on equations (17) and (14) are preferable. 
 In the FGN process, the autocorrelation is independent of time scale, as already 
expressed in equation (3). The exact expression of autocorrelation (e.g. Koutsoyiannis, 
2002a,b) is:  

ρ(k)
j  = ρj = (1/2) [(|j + 1|)2H + (|j – 1|)2H ] – |j|2H (20) 

where the Hurst coefficient is determined from ρ1 = ρ. Combining (3) and (8), it is 
obtained that the unconditional entropy at scale k is: 

φ(k) = ln(kH–1 σ 2πe) (21) 
The conditional entropy can be estimated numerically from equation (14). Systematic 
numerical investigation for H ranging in (0.5, 1) allowed the construction of the 
following approximation: 

φ(k)
c  ≈ ln{kH–1 σ 2 π e 1 – (2H – 1)2 [0.72(H – 1) + 1]} (22) 

ψ(k) ≈ –ln 1 – (2H – 1)2 [0.72(H – 1) + 1]  
which shows that the information gain is independent of the scale k. The 
approximation error of ψ(k) is smaller than ±0.4%.  
 The next two benchmark processes are chosen in an attempt to establish the least 
and the highest, respectively, autocorrelation function that is mathematically feasible 
and physically reasonable. An autocorrelation function is mathematically feasible if the 
implied covariance matrix cn (defined in (15)) is positive definite for any n. Given that 
the processes considered here are stationary (as already justified earlier) and have a 
certain lag-one autocorrelation ρ, it may be assumed that an autocorrelation function is 
physically reasonable if it is non-negative and non-increasing. The non-negativity 
postulate is consistent with the stationarity assumption, given that processes with over-
annual periodicities, which might cause negative correlations, are not considered here. 
The non-increasing postulate will be replaced later by a more restrictive one.  
 In this sense, the least non-negative autocorrelation function is given by the MA(1) 
process, in which:  
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ρ0 = 1,      ρ1 = ρ,       ρj = 0, |j| > 1 (23) 

This, however, is mathematically feasible when it yields positive determinants δn for 
any n > 0, which happens when ρ ≤ 0.5. For ρ > 0.5 the least feasible non-negative 
autocorrelation function corresponds to a higher order MA(q). For each q, a maximum 
lag-one autocorrelation ρ*(q) can be determined by maximizing ρ1 subject to 
constraints δn > 0. For example, numerical application of this method results in  
ρ*(1) = 0.5, ρ*(2) = 0.707, ρ*(3) = 0.809, ρ*(4) = 0.866 and so on. Thus, given a 
specific value of ρ, the minimum order q of the required MA(q) model can be 
determined so that ρ*(q – 1) ≤ ρ ≤ ρ*(q). Then, to find the least feasible non-negative 
autocorrelation, the exact values of the remaining non-zero autocorrelation coefficients 
(ρ2, …, ρq) can be estimated by minimizing the sum ρ2 + … + ρq, again subject to 
constraints δn > 0. For example, for ρ = 0.75, the MA(1) and MA(2) models are 
infeasible, whereas MA(3) (and beyond) is feasible (because ρ*(2) = 0.707 ≤ ρ = 0.75 
≤ ρ*(3) = 0.809). Furthermore, by numerical application of the same method it is 
obtained that the least feasible autocorrelation function of MA(3) is ρ0 = 1, ρ1 = 0.75, 
ρ2 = 0.470, ρ3 = 0.175, ρj = 0 for |j| > 3. At aggregate scales k > 1, the MA(q) model 
yields another MA(q′) with q′ ≤ q. Entropy calculations at any scale can be done 
numerically because derivation of analytical equations is too complicated.  
 The highest feasible non-increasing autocorrelation function is:  

ρ0 = 1,      ρj = ρ,     |j| > 1 (24) 

It can be shown that the power spectrum of this process is constant s(ω) = 2 (1 – ρ) at 
any frequency ω that is a rational number (ω = m/n, where m and n are positive 
integers with m ≤ n/2). By analogy to the white noise, which has constant s(ω) = 2, this 
process that has again constant s(ω), but smaller than 2, has been called the grey noise 
(GN). Clearly, GN is a non ergodic process since limj→∞ ρj = ρ ≠ 0 (Papoulis, 1991,  
p. 432), whereas the other three benchmark processes described earlier are ergodic 
processes. This means that the statistics of the process cannot be deduced from a time 
series. Furthermore, if a physical process were GN, a realization of it, i.e. a single time 
series, could not reveal that the process is GN. A simple simulation experiment shows 
that a time series generated from this process behaves like white noise. In this respect, 
GN may not be a useful model to describe some physical phenomenon. However, it is 
useful as a limiting benchmark case in the context of comparison of different stochastic 
models. 
 Figure 4 depicts comparisons of the four benchmark processes in terms of the 
implied unconditional and conditional entropies as functions of time scale for four 
different values of the lag-one autocorrelation, i.e. ρ = 0, 0.25, 0.5 and 0.75. The time 
scales used for these comparisons and in all subsequent sections range from 1 to 50. It 
is noted that the growth of time scale increases dramatically the required calculations 
as in most cases these are numerical and intensive (e.g. involve computations of 
determinants). The conditional entropy (which is a limit for m → ∞ as shown in 
equation (14)) was estimated for m = 50, which in all cases was found to yield 
sufficient approximation). With these values (kmax = 50, m = jmax = 50), it can be seen 
from equation (17) that about 2550 autocovariance terms are required for the 
calculations. For simplicity and without loss of generality, in all cases the variance at 
the basic scale was assumed to be unity. 
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Fig. 4 Comparison of the four benchmark models in terms of the implied uncon-
ditional and conditional entropies as functions of time scale assuming lag-one 
autocorrelation (a) ρ = 0; (b) ρ = 0.25; (c) ρ = 0.5; and (d) ρ = 0.75. The autoregressive 
(AR) process is AR(1) whereas the moving average (MA) process is MA(1) in (b) and 
(c) and MA(3) in (d). 

 
 
 In the case of ρ = 0, all four benchmark processes become identical to white noise 
and simultaneously conditional entropy is identical to the unconditional entropy. For 
the other three values of autocorrelation, the following can be observed in Fig. 4: 
– For scales k = 1 and 2, all three models result in the same unconditional entropy φ.  
– For larger scales, GN corresponds to the maximum unconditional entropy followed 

by FGN, AR and MA. 
– For scales k = 1 and 2, the maximum conditional entropy φc is given by AR and 

MA, respectively.  
– The GN model, which gives the highest, among the four models, unconditional 

entropy, simultaneously gives the least conditional entropy at almost all scales. 
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– For large scales, the model which gives the highest, among the four models, 
conditional entropy, is the FGN. 

– For large scales (and with the exception of GN), the increase of autocorrelation ρ 
results in increase of both unconditional and conditional entropy. This may be 
contrary to the common perception that strong autocorrelation decreases prediction 
uncertainty (which is directly linked to conditional entropy), which however is 
correct for small time scales, e.g. 1–2. 

 In addition, Fig. 4 manifests the difficulties in applying the ME principle. Given 
the antagonistic behaviour observed in different scales and different entropy types, one 
may think that the application of ME should involve many time scales and both 
unconditional and conditional entropies. It would be unreasonable to accept that the 
ME principle would result in the GN model, which on the one hand maximizes the 
unconditional entropy and on the other hand minimizes conditional entropy, i.e. it 
minimizes uncertainty in the case that the past were observed.  
 
 
PARAMETRIC MAXIMIZATION OF CONDITIONAL ENTROPY  
 
A general conclusion of the previous section is that the maximization of merely the 
unconditional entropy would result in the GN model at any time scale, whereas 
maximization of merely the conditional entropy at scales 1 and 2 results in the AR and 
MA models, respectively. Although these results were obtained by comparison of four 
benchmark processes, it can be shown that they are general. It is interesting to find the 
autocorrelation function that maximizes merely the conditional entropy but at large 
scales. To this aim and to avoid the extremely high computational effort that would be 
required if all autocovariance terms were considered to be unknowns in the optimiza-
tion, a parametric expression of the autocovariance function is assumed, i.e.:  

γj = γ0(1 + κ β |j|α)–1/β  (25) 

This generalized Cauchy-type expression with parameters κ, α and β that are positive 
numbers was studied by Koutsoyiannis (2000) in a simpler Pareto-type form, i.e. with 
α = 1, and later, in some modified forms, by Gneiting & Schlather (2004). When β = 0, 
(25) takes the Weibull-type form:  

γj = γ0 exp(–κ |j|α)  (26) 

In the case examined, since ρ1 = γ1/γ0 is fixed to ρ, equations (26) and (25) involve 
respectively one and two free parameters, because κ can be determined from: 

κ = 
�
�
�(ρ–β – 1)/β     β > 0
 –ln ρ      β = 0 (27) 

 It can be seen that all four benchmark processes of the previous section can be 
obtained from the generalized Cauchy-type expression. Specifically, the AR(1), MA(1) 
and GN processes are obtained for β = 0 and respectively α = 1, α → ∞ and α → 0. 
The FGN model is obtained for α / β = 2 – 2H and α → ∞. Furthermore, equation (25) 
yields a rich family of autocorrelation functions as it can be seen in Koutsoyiannis 
(2000) and Gneiting & Schlather (2004). Therefore, equation (25) is a proper 
parametric model to use in conditional entropy maximization. 
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Fig. 5 (a) Autocorrelation functions that maximize conditional entropy at each of the 
indicated time scales (k = 1, 2, 4, 8, 16, 32 and 50) assuming lag-one autocorrelation ρ 
= 0.50. (b)–(d) Resulting unconditional and conditional entropy and information gain, 
respectively, as function of time scale k. In all panels, the relevant plots of benchmark 
models are also given for comparison. 

 
 
 For a given variance γ0, lag-one autocorrelation ρ and scale k, the autocorrelation 
function ρ(k)

j  and, consequently, the conditional entropy φ(k)
c  are functions of parameters 

α and β. Therefore, the problem is to determine the values of α and β that maximize 
φ(k)

c . This can be done only numerically. Examples of the optimized autocorrelation 
functions for γ0 = 1, ρ = 0.5, and k = 1, 2, 4, 8, 16, 32 and 50 are shown graphically in 
Fig. 5. In all cases, the optimized β is zero, which corresponds to Weibull-type 
autocorrelation. For k = 1 and 2, as expected, the optimal autocorrelation functions are 
those of AR(1) and MA(1) processes, respectively. For larger k, the optimal 
autocorrelation function gradually raises from the MA(1) case approaching and then 
surpassing the FGN case (Fig. 5(a)). Similar behaviour is observed in the plots of the 
corresponding unconditional and conditional entropy and information gain (Fig. 5(b), 
(c), (d), respectively). The general conclusion of this experiment is that the maxi-
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mization of conditional entropy at large time scales results in processes that are Hurst-
like (with fat tails of autocorrelation functions) but not precisely scaling. 
 Given that in all cases depicted in Fig. 5 the optimized β was zero, i.e. the resulting 
autocorrelation function was Weibull-type with one free parameter α as in equation 
(26), it is interesting to investigate the variation of entropies and information gain with 
the variation of α or equivalently, with the variation of the ratio of lag two to lag-one 
autocorrelation which will be denoted by λ. From equation (26) it is obtained that  
λ = ρ1–2α, which shows that if ρ1 ≡ ρ and λ = ρ2/ρ1 are fixed, then α and the complete 
autocorrelation function are fixed, too.  
 This investigation is shown graphically in Fig. 6 for ρ = 0.50 and scales k = 1, 2 
and 50. As already mentioned, for scales k = 1 and 2, the unconditional entropies are 
constant, independent of λ. As shown in Fig. 6(a), for scale 50, the unconditional 
entropy is an increasing function of λ and thus it takes its maximum value for λ = 1 
(values λ > 1 have been excluded as physically unreasonable). The conditional entropy 
for scale k has a maximum at a certain λk which is different for different scales, i.e.  
λ1 = 0.5 (corresponding to the AR(1) case), λ2 = 0 (corresponding to the MA(1) case) 
and λ50 = 0.85 (corresponding to the maximized autocorrelation function plotted in 
Fig. 5(a)). Figure 6(b) shows the information gain as a function of λ. For scale k = 1, 
this function is concave with its minimum at λ1 = 0.5 (corresponding to the AR(1) 
case). For larger scales, it is an increasing function of λ attaining its maximum at λ = 1. 
For some value λ*k (where λ*2 = 0.77 and λ*50 = 0.87) the information gain for scale k 
becomes equal to that for scale 1, i.e. ψ(k) = ψ(1), while beyond λ*k, ψ(k) > ψ(1). Here one 
may notice that the case ψ(k) > ψ(1) may be not physically reasonable. For, it is not 
reasonable to assume that observing the present and past will lead to information gain 
for the next k time steps (i.e. ψ(k)) that is greater than the information gain for the next 
single time step (i.e. ψ(1)). Thus, in the optimization of ME, all values λ > λ*2 should 
be excluded as being physically unreasonable. 
 Extending this thinking, the postulate for a non-increasing autocorrelation function 
may be replaced by the postulate for a non-increasing information gain function,  
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Fig. 6 Variation of conditional and unconditional entropy and information gain for 
scales k = 1, 2 and 50 assuming ρ = 0.5 and Weibull-type autocorrelation (β = 0) with 
varying parameter α, versus the ratio λ := ρ2 / ρ1, which is determined from α.  
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Fig. 7 Explanation sketch for the postulate of non-increasing information gain.  

 
 
assuming that the latter postulate assures a physically reasonable autocorrelation 
structure. It is likely that this postulate may be produced from other considerations. As 
an attempt to this aim and also as a further clarification, an additional demonstration is 
provided with the help of the sketch in Fig. 7. For simplicity, the demonstration is done 
for scales 1 and 2 (the generalization is direct). At these scales, the process of interest 
is described by the variables X

(1)
i  and X

(2)
j  with standard deviations σ(1) and σ(2), res-

pectively, where i and j denote discrete time and (due to (1), X
(2)
j

 = (1/2)(X
(1)
2j–1 + X

(1)
2j ; 

e.g. X
(2)
2

 = (1/2)(X
(1)
1  + X

(1)
2 )). Let σ

(1)
i  and σ

(2)
j  denote the conditional standard deviations 

(at times i and j and scales 1 and 2, respectively) in the case that the process has been 
observed at present and past times (i, j = 0, –1, –2, …). Clearly, σ

(1)
i  is not the same for 

all i, but it is zero for i ≤ 0 and an increasing function of i for i > 0. As i tends to 
infinity, σ

(1)
i  tends to the unconditional σ(1), so that σ

(1)
i /σ(1) tends to unity (see Fig. 7) 

and σ
(2)
j /σ(2) behaves similarly. Intuitively, it is reasonable to accept that the 

aggregation of scale results in a more flat shape of σj/σ, i.e. that the plot of σ
(2)
j /σ(2) will 

be flatter than that of σ
(1)
i /σ(1). In this respect, it seems reasonable to accept that the first 

coordinate at scale 2 would be in between the first and second coordinate at scale 1, i.e. 
σ

(1)
1 /σ(1) ≤ σ

(2)
1 /σ(2) ≤ σ

(1)
2 /σ(1). If the logarithms of the first of these inequalities are taken, 

it is obtained that ln σ
(1)
1  – ln σ(1) ≤ ln σ

(2)
1  – ln σ(2). Observing that ln σ(1) is proportional 

to the unconditional entropy φ (equation (8)) and ln σ
(1)
1  is proportional to the 

conditional entropy φc (equations (8) and (12) along with the normality of 
f(Χ1|X0, …, X–m+1)), and using equation (13), it is obtained that ψ(1) ≥ ψ(2). This is the 
non-increasing property of ψ for scales 1 and 2, extendable to other scales by the same 
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thinking. Obviously, all this discussion is not a mathematical proof, nor a formulation 
of a mathematical principle (as is, for instance, the requirement for a positive definite 
autocovariance matrix discussed earlier); in contrast, violation of ψ(1) ≥ ψ(2) is mathe-
matically feasible. Rather, this discussion is a demonstration based on physical 
intuition; therefore, the postulate for non-increasing ψ is put as a postulate for a 
physically reasonable autocorrelation function.  
 Coming back to Fig. 5(d), it may now be seen that the autocorrelation functions 
optimized so far (those for scales ≥ 16) do not satisfy this postulate for physical 
reasonability, as they result in information gain that for small scales is an increasing 
function of scale.   
 
 
CONSTRAINED PARAMETRIC ENTROPY MAXIMIZATION  
 
After the discussion of the previous section, the maximization of entropy, conditional 
or unconditional, should be done with the additional constraint that the information 
gain should be a non-increasing function of time scale. A systematic numerical maxi-
mization experiment, similar to that of the previous section but with this additional 
constraint, is depicted in Fig. 8. For small time scales, i.e. k ≤ 8, the results are the 
same as in Fig. 5 but for larger scales are different. Clearly, Fig. 8(a) shows that, as the 
time scale used for maximization increases, the autocorrelation function approaches 
that of FGN model, now without surpassing it. Again, for all scales the autocorrelation 
functions that maximize conditional entropy correspond to β = 0. Intuitively, the FGN 
model can be obtained as the limit of the ME autocorrelation as the time scale of 
interest tends to infinity.  
 It is reminded that the maximization of unconditional entropy leads to the GN 
model for any time scale k > 2. However, if the constraint of non-increasing informa-
tion gain is imposed, then the resulting model is the FGN. This is depicted in Fig. 9 for 
ρ = 0.50. If the optimization is done for time scales k = 4 or k = 8, the same ME 
autocorrelation is obtained for both cases, which corresponds to β = 0 and is close to 
that of the FGN model. For all larger time scales, a single autocorrelation function is 
obtained, which corresponds to β > 0 and is practically indistinguishable from that of 
the FGN model. Similar results were found for other values of ρ; Fig. 10 shows the 
results of another experiment for ρ = 0.75.  
 In conclusion, if the constraint of non-increasing information gain is imposed and 
if the time scale of interest is large enough, the maximization of either the 
unconditional or conditional entropy leads to the FGN model. The convergence of the 
ME autocorrelation to the FGN model is faster in the case of maximization of the 
unconditional entropy.  
 
 
CONSTRAINED NONPARAMETRIC ENTROPY MAXIMIZATION  
 
All previous experiments were based on the parametric autocorrelation function (25), 
which was optimized for a single time scale of interest. As a final step of this 
investigation, a non-parametric approach is elaborated, according to which all 
autocorrelation coefficients ρj for j = 2 to 50 are considered as unknowns. To avoid an 
unnecessarily high number of control variables, the parametric autocorrelation function  
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Fig. 8 (a) Autocorrelation functions that maximize conditional entropy at each of the 
indicated time scales assuming lag-one autocorrelation ρ = 0.50 and constraining 
information gain to be non-increasing function of time scale. (b)–(d) Resulting 
unconditional and conditional entropy and information gain, respectively, as function 
of time scale. In all panels, the relevant plots of benchmark models are also given for 
comparison.  

 
 
(25) is kept for lags j > 50 and its parameters α and β are additional unknowns, so that 
the maximization includes 49 + 2 = 51 control variables in total. In addition, instead of 
using one time scale for the maximization, a range of time scales k = 1 to kmax is 
considered and the average unconditional entropy over all scales k of this range is 
maximized. The non-increasing information gain constraint (i.e. ψ(k) ≤ ψ(k–1) for any k) 
is also used. The optimization is done numerically using a widespread solver by 
Frontline Systems (www.solver.com) combining classical and evolutionary 
optimization techniques. 
 The results of this nonparametric optimization experiment for ρ = 0.5 and maxi-
mum scales kmax = 4, 8, 16, 32 and 50 is shown in Fig. 11. It is observed that if the 
optimization is done for scales 1 to kmax, then the resulting ME model is practically 
indistinguishable from FGN for scales 1 to kmax/2 and as the maximum scale of interest 
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Fig. 9 Similar to Fig. 8 but for maximizing unconditional entropy. 
 
 
kmax increases, the ME model tends to be identical to the FGN model. It is not 
reasonable to designate a special importance to some specific finite maximum scale 
kmax, so eventually the optimization should be done for kmax → ∞. Although this case 
cannot be elaborated with numerical calculations and an analytical solution may be 
hard to establish, it may be conjectured, based on the numerical results shown in 
Fig. 11, that for kmax → ∞ the ME model will be precisely the FGN model.  
 
 
SYNOPSIS, CONCLUSION AND DISCUSSION  
 
In the first part of this study, the principle of maximum entropy (ME), representing 
maximum uncertainty, was used to explain the statistical distributions met in hydro-
logical variables. The only assumptions used for the maximization of entropy are that a 
hydrological variable is non-negative with specified coefficient of variation. The 
results of the analysis of the first part can be summarized as follows: 
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Fig. 10 Same as Fig. 9 but for ρ = 0.75. 

 
 
(a) Maximum entropy + Low variation → Exponential-type (truncated normal) 

distribution 
(b) Maximum entropy + High variation → Power-type (Pareto) distribution 
(c) Maximum entropy + High variation + High return periods → State scaling (as an 

approximation) 
 This second part of the study is devoted to the joint distributional properties, spe-
cifically to the time dependence structure of hydrological processes, and the potential 
explanation of the time scaling via the ME principle. The analysis of this part 
considers time scales not finer than annual that are characterized by variation so low 
that the truncated normal distribution is virtually identical to the normal distribution. 
The results can be summarized as follows: 
(d) Maximum entropy + Low variation → Normal distribution + Time independence  
(e) Maximum entropy + Low variation + Time dependence + Dominance of a single 

time scale → Normal distribution + Markovian (short-range) time dependence  
(f) Maximum entropy + Low variation + Time dependence + Equal importance of 

time scales → Normal distribution + Time scaling (long-range dependence) 
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Fig. 11 (a) Non-parametric autocorrelation functions that maximize unconditional 
entropy averaged over the indicated ranges of time scales, assuming lag-one 
autocorrelation ρ = 0.50 and constraining information gain to be non-increasing 
function of time scale. (b)–(d) Resulting unconditional and conditional entropy and 
information gain, respectively, as function of time scale. In all panels, the relevant 
plots of benchmark models are also given for comparison. 

 
 
 The assumption used in the second part (except in case (d)), in addition to those of 
the first part, is that a process exhibits time dependence expressed by a specified lag-
one autocorrelation coefficient which is a positive number. The maximization of 
entropy was done in terms of determining an unknown autocorrelation function, which 
should be (i) mathematically feasible, i.e. result in positive definite autocovariance 
matrices, and (ii) physically reasonable, i.e. be non-negative and result in information 
gain that is a non-increasing function of time scale. 
 Eventually, it is hard to imagine a hydrological process without any time 
dependence, at least at a fine time scale, which may be inherited to coarser scales, too. 
In addition, it is difficult to find justifiable reasons that make a single time scale 
dominant. In this respect, among the above listed cases (d)–(f), the last one (f) appears 
to be physically more realistic. This justifies the omnipresence of the Hurst behaviour. 
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It should be noted that in short time series (e.g. shorter than 100 years), which 
dominate in hydrological sciences, the Hurst behaviour may be not visible because 
classical statistics tend to hide it (Koutsoyiannis, 2003a).  
 The study of maximum entropy in this paper involves three quantities: the uncon-
ditional entropy, i.e. the uncertainty when nothing is observed about the process, the 
conditional entropy, i.e. the uncertainty when the past and present states of a process 
are observed, and the information gain, i.e. the difference of conditional and uncondi-
tional entropies, which is always non-negative. As time scale increases, both the 
unconditional and conditional entropy decrease. In a scaling process, they decrease at 
equal rates, so that the information gain is constant, independent of the time scale. In 
non-scaling processes such as the Markovian, the information gain decreases rapidly 
with the increase of time scale. However, the constant information gain of the scaling 
case does not favour prediction at large scales. In fact, the constant information gain is 
closely related to the fact that both unconditional and conditional entropies are much 
higher in a scaling process than in a Markovian process or in a process of independent 
variables. Thus, the scaling behaviour, despite its high autocorrelation function, 
implies greater prediction uncertainty when large time scales are considered. It is 
generally believed that an accurate prediction of a process state at a long time horizon 
is impossible, but a prediction of the mean future conditions for this horizon is much 
easier. For example, it is believed that the prediction of weather in the next 30 years is 
impossible, but the prediction of the mean weather of the next 30 years, i.e. the 
climate, can be accurate. The studied entropy properties of the time scaling behaviour 
show that this may be wrong and that predictions of the future are difficult (as 
expressed in the quotation in the beginning of the Introduction) both on small and large 
time scales.  
 Several issues related to the application of the ME principle to hydrological 
processes should be addressed with further research. A first important issue is the 
study of the consequences of the ME principle on small time scales, in which the 
variability of a hydrological process can be high and the sub-annual periodicity makes 
the stationarity assumption invalid. Another related issue, also requiring further 
research, is the application of the ME principle in the case of over-annual periodicities, 
for which again the stationarity assumption is not applicable. A further important issue 
is the explicit use of the ME principle to stochastic generation algorithms, especially in 
a multivariate or even multidimensional framework. Finally, the general conclusion of 
this study, i.e. the dominance of the principle of maximum entropy in hydrological 
(and meteorological) processes must be exploited further to make a more consistent 
assessment of predictability of these processes and to widen our estimates of nature’s 
uncertainty. 
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