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Abstract The well-established physical and mathematical principle of maximum 
entropy (ME), is used to explain the distributional and autocorrelation properties of 
hydrological processes, including the scaling behaviour both in state and in time. In 
this context, maximum entropy is interpreted as maximum uncertainty. The conditions 
used for the maximization of entropy are as simple as possible, i.e. that hydrological 
processes are non-negative with specified coefficients of variation (CV) and lag one 
autocorrelation. In this first part of the study, the marginal distributional properties of 
hydrological variables and the state scaling behaviour are investigated. Application of 
the ME principle under these very simple conditions results in the truncated normal 
distribution for small values of CV and in a nonexponential type (Pareto) distribution 
for high values of CV. In addition, the normal and the exponential distributions appear 
as limiting cases of these two distributions. Testing of these theoretical results with 
numerous hydrological data sets on several scales validates the applicability of the ME 
principle, thus emphasizing the dominance of uncertainty in hydrological processes. 
Both theoretical and empirical results show that the state scaling is only an approxi-
mation for the high return periods, which is merely valid when processes have high 
variation on small time scales. In other cases the normal distributional behaviour, 
which does not have state scaling properties, is a more appropriate approximation. 
Interestingly however, as discussed in the second part of the study, the normal 
distribution combined with positive autocorrelation of a process, results in time 
scaling behaviour due to the ME principle.  
Key words  entropy; hydrological design; hydrological extremes; hydrological statistics;  
power laws; risk; scaling; uncertainty 

Incertitude, entropie, effet d’échelle et propriétés stochastiques 
hydrologiques. 1. Propriétés distributionnelles marginales des 
processus hydrologiques et échelle d’état 
Résumé Le principe bien établi, à la fois physique et mathématique, de l’entropie 
maximale (EM) est employé pour expliquer les propriétés de distribution et 
d’autocorrélation des processus hydrologiques, y compris le comportement d’échelle 
dans l’état et dans le temps. Dans ce contexte, l’entropie maximale est interprétée en 
tant qu’incertitude maximale. Les conditions utilisées pour la maximisation de 
l’entropie sont le plus simples possible: les processus hydrologiques sont non négatifs 
avec des coefficients de variation (CV) et d’autocorrélation fixés. Dans cette première 
partie de l’étude, les propriétés distributionnelles marginales des variables 
hydrologiques et le comportement d’échelle d’état sont étudiés. L’application du 
principe de l’EM dans ces conditions très simples aboutit à une distribution normale 
tronquée pour les petites valeurs de CV et à une distribution non-exponentielle (du 
type Pareto) pour les grandes valeurs de CV. En outre, les distributions normale et 
exponentielle apparaissent comme cas limites de ces deux distributions. Le test de ces 
résultats théoriques sur de nombreuses données hydrologiques sur plusieurs échelles 
valide l’applicabilité du principe de l’EM, ce qui souligne le caractère dominant de 
l’incertitude dans les processus hydrologiques. Les résultats à la fois théoriques et 
empiriques montrent que la graduation d’état est seulement une approximation pour 
les périodes de retour élevées, ce qui est simplement valide quand les processus ont 
une variabilité élevée sur de petites échelles de temps. Dans d’autres cas, le 
comportement distributionnel normal, qui n’a pas de propriétés d’échelle d’état, est 
une approximation plus appropriée. Cependant, comme discuté dans la deuxième 
partie de l’étude, la distribution normale, combinée avec l’autocorrelation positive 
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d’un processus, a comme conséquence un comportement d’échelle de temps dû au 
principe de l’EM.  
Mots clefs  entropie; dimensionnement hydrologique; extrêmes hydrologiques; statistiques 
hydrologiques; lois puissance; risque; effet d’échelle; incertitude 

 
 
INTRODUCTION 
 
Ἕν οἶδα, ὃτι οὐδέν οἶδα.  
Σωκράτης 
(One I know, that I know nothing.  
Socrates)  
 
Major questions of hydrological statistics 
 
Hydrological statistics uses a rich repertoire of statistical distributions (e.g. Kite, 
1988), such as normal, lognormal, Pearson, log-Pearson, Weibull, Extreme Value of 
maxima and minima of types I, II, and II (EV1, EV2, EV3) and fits them to several 
hydrological quantities such as rainfall and runoff. For each case examined, the 
problem is to choose the most appropriate theoretical distribution from the repertoire, 
based on comparisons with empirical distributions. Generally, hydrological statistics 
asks questions of the type “which?” and avoids questions of the type “why?”. 
However, the latter would provide an explanation of the appropriateness or inapprop-
riateness of a certain distribution and thus would also help choose the most appropriate 
distribution. In few cases, explanations exist. Thus, in a region where the number of 
rain days in a year is high, the distribution of the annual rainfall depth tends to follow 
the normal distribution and this is explained by the Central Limit Theorem. But, when 
the time scale is finer than annual, e.g. monthly, daily, or hourly, the Central Limit 
Theorem does not help. As the time scales become finer and finer, the distribution of 
rainfall becomes more and more asymmetric and (inverse) J-shaped. This is the case 
for streamflow, as well, but not for every process of interest. For example, temperature 
keeps the symmetric bell-shaped pattern regardless of the scale. These observations 
imply a lot of type “why?” questions which have not been answered and have been 
studied rarely (e.g. Eagleson, 1972).  
 The situation is similar in applications of stochastic processes to hydrology, where 
again the typical problem is to find “which” model (e.g. from the ARMA(p, q) family) 
is the most appropriate. Here the term “hydrological stochastics” is used to describe 
both typical hydrological statistics as well as application of stochastic processes to 
hydrology. (The term “stochastics” has been used recently by mathematicians for a 
joint description of probability theory, statistics and stochastic processes, e.g. 
Barndorff-Nielsen et al., 2001.)  
 The importance of “why?” becomes more evident when studying extreme events. 
Obviously, observations of extreme events cannot be as numerous as those of regular 
events. Therefore, a theoretical reasoning of the appropriateness of a statistical distri-
bution, in addition to the empirical study of the data, would help for a more justified 
and correct choice. In the study of extreme events, theoretical reasoning results in three 
possible asymptotic behaviours producing the EV1, EV2 and EV3 distributions. These 
correspond to a behaviour in the tail of the parent distribution that is respectively 
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exponential type, power (Pareto) type bounded from below and power type bounded 
from above. The questions, “which of them?” and “why?”, are very important in this 
case because the difference of the three distributions is very substantial at large return 
periods and simultaneously invisible at small return periods corresponding to the time 
span of typical hydrological record lengths. For a long time, EV1 was regarded as the 
most appropriate. More recent research provides evidence in favour of EV2 
(Koutsoyiannis, 2004a,b), whose importance in hydrology was initially underlined by 
Bernier (1964). However, these questions have not been answered in a theoretically 
sound manner so far.  
 
 
The forms of scaling 
 
The tendency to shift from the exponential type tails of parent distributions to the 
power type goes with the flow in other disciplines. It is known that power type 
distributions have been observed in geophysics, in economics and even in humanities. 
The power law behaviour of a distribution can be expressed formally by either of the 
following power type equations: 

x = (λ/κ) (T/δ) κ,    f(x) = 
1
λ 
�
�
�

�
�
�λ

κ x
1 + 1/κ

,   F*(x) = 
�
�
�

�
�
�λ

κ x
1/κ

,   F*(l x) = l –1/κ F*(x) (1) 

where X denotes a random variable that represents the quantity of interest; x a value of 
this variable (x > λ/κ); T the return period of value x; δ is the mean interarrival time of 
an event that is represented by the variable X (e.g. if X represents annual values, δ = 1 
year); f(x) the probability density function of X; F*(x) the survival function of X; λ and 
κ positive distributional parameters (scale and shape parameters respectively); and l 
any positive number. The quantities T, F*(x), f(x) and the probability distribution 
function F(x) of X are related to each other by 

F*(x) := P{X > x},   F(x) := P{X ≤ x},   T := 
δ

F*(x),    f(x) := 
dF(x)
∂x  = – 

dF*(x)
dx  (2) 

where P{ } stands for the probability of an event, and “:=” denotes “is defined as”. 
 All four equations of set (1) are equivalent to each other and express a single 
distribution function. This function (sometimes termed a fractal distribution), is a 
special case of the generalized Pareto distribution. The last of the set of equations (1) 
emphasizes the scaling property of the distribution, i.e. the fact that the mathematical 
expression describing the survival function does not change with a scaling of the 
amount x by a real number l except for a multiplicative factor which is a power law of 
the scaling factor l. To describe this property the term scaling in state, or the simpler 
state scaling, will be used. This is to distinguish from another type of scaling, which is 
essentially different, the time scaling. The latter behaviour, which is nothing different 
from a mathematical description (again involving several power laws) of the well-
known Hurst phenomenon, will be studied in the second part of the study.  
 The wide presence of power laws and scaling, both in state and in time, in 
observed time series of almost every discipline have amazed many scientists and led 
them to write papers and books related to them. From the large family of similar 
books, three are mentioned here, which have the eloquent titles Ubiquity (Buchanan, 
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2000), Fractals, Chaos, Power Laws (Schroeder, 1991), and How Nature Works (Bak, 
1996). In the last one, an explanation of this behaviour is given based on the principle 
of “self organized criticality”.  
 
 
The enrolment of the entropy concept 
 
The wide presence of scaling and power laws may be compared to that of normal 
distribution. The fact that this distribution was found to describe several variables in 
nature and even in the society may have initially seemed a mysterious, amazing puzzle. 
However, the Central Limit Theorem, whose formulation and proof passed several 
phases (from the early 19th century with Laplace to the mid-20th century with 
Lindeberg, Feller and Lévy), removed the mystery, as it explains the emerging of this 
distribution and describes the conditions under which this distribution is anticipated to 
emerge.  
 Here it should be noted that the normal distribution is contrary to the power-law 
distribution in (1). Thus, there must be different conditions that favour the emerging of 
the one or the other distribution. Can these conditions be unified in a single measure 
which can determine whether the normal, the power type, or another type of 
distribution will emerge in a specific case? This is one of the questions considered in 
this paper; the answer to this question replies also to some of the “why?” type 
questions mentioned earlier. And this unification is sought upon the principle of 
maximum entropy (ME), which is a well established principle in physics and 
mathematics. It is known (e.g. Papoulis, 1991, p. 573; see also next section) that the 
ME principle, under certain conditions, produces the normal distribution independently 
of the Central Limit Theorem. Thus, it may be worth searching whether the same 
principle can produce the state scaling behaviour or another behaviour, under different 
conditions. It may be also worth searching whether the same principle can produce the 
time scaling behaviour thus giving an explanation of the Hurst phenomenon.  
 These issues are investigated in this study which is separated into two parts. The 
first deals with marginal distributional properties and state scaling, and the second with 
joint distributional properties and time scaling. The notion of entropy, which is used 
throughout both papers, has many meanings and interpretations in physics and 
mathematics. The standard interpretation in the theory of stochastic processes (also 
used here) is that entropy is a measure of uncertainty or ignorance (e.g. Papoulis, 
1991). In this respect, maximization of entropy is equivalent to maximization of 
uncertainty; thus, if the application of ME principle proves to be successful in a certain 
natural phenomenon, i.e. proves to give results complying with observation, then this 
can be interpreted as the dominance of uncertainty in this natural phenomenon. In 
other disciplines, entropy may be regarded as a measure of complexity, order or 
disorder, information and discrimination (e.g. Georgii, 2003).  
 The entropy concept has already been used in hydrology and water resources in a 
lot of cases, which are comprehensively summarized by Singh (1997). Typical applica-
tions in hydrology include derivation of distributions (for example, Singh & 
Fiorentino, 1992, contains 15 distributions derived by the ME principle, including 
most distributions frequently used in hydrology), parameter estimation, flow 
forecasting, characterization of basin morphology, design of hydrological networks, 
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and parameter estimation of aquifers (Singh, 1997). In this study, it is attempted to use 
the entropy concept in a somewhat different context. For example, to refer to the 
already mentioned Pareto distribution, Sing & Guo (1995a,b) found which specific 
constraints give rise to this distribution and, subsequently, what the estimates of the 
parameters of the distribution would be. In contrast, here it is endeavoured to study the 
question whether this distribution (and the implied scaling behaviour) or another one 
(e.g. the normal distribution) can arise from unified conditions, which are as simple as 
possible. In this respect, the scope of the present study is exploratory and explanatory. 
Thus, the tools suitable to this context are graphical depictions and comparisons 
emphasizing the general “shapes” of distributional and dependence behaviours. On the 
other hand, no emphasis has been given to precise calculations and computational 
estimation methods, for which the interested reader is referenced to the above 
mentioned studies and those cited within them.  
 The simple unified conditions are, for the case of marginal distributional 
properties, the hypotheses that a hydrological variable is non-negative and possesses a 
certain variability, expressed by the coefficient of variation (CV). For the case of time 
scaling, simple additional hypotheses are used as described in the second part of the 
study.  
 
 
THE ENTROPY CONCEPT 
 
The origin of entropy in thermodynamics 
 
The concept of entropy (in Greek εντροπία, etymologized from τροπή, i.e. change, 
turn, drift, as in troposphere) originated in the middle of the 19th century in the work 
of Clausius, and was fundamental to formulate the second law of thermodynamics. In 
the late 19th and early 20th centuries, Boltzmann, then complemented by Gibbs, gave 
it a statistical mechanical content, showing that entropy of a macroscopic stationary 
state is proportional to the logarithm of the number w of possible microscopic states 
that correspond to this macroscopic state. Also, Planck recorded the explicit relation-
ship between entropy and probability. In the middle of the 20th century, Shannon 
generalized the mathematical form of entropy and also explored it further. At the same 
time, Kolmogorov founded the concept on more mathematical grounds on the basis of 
the measure theory (see e.g. Papoulis, 1991, p. 535; Müller, 2003a; Keane, 2003; 
Tsallis, 2004). 
 
 
The entropy in discrete state variables 
 
For a discrete random variable X taking the values xj (j = 1,…, w) with probabilities pj 
≡ p(xj) such that: 

�
j = 1

w
 pj = 1   (3) 

the entropy, or more precisely the Shannon or extensive entropy, is by definition (e.g. 
Papoulis, 1991, p. 558) the quantity: 
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φ := Ε[–ln p(Χ)] = –�
j = 1

w
 pj ln pj   (4) 

where E[ ] denotes expected value. In physics texts, entropy is usually denoted by the 
letter S, whereas in statistics texts the symbol H is commonly used to avoid confusion 
with standard deviation. Here the symbol H is reserved for the Hurst coefficient, so the 
Greek letter φ was preferred, which has been used aforetime for entropy.  
 It is easily seen that the ME principle, i.e. the maximization of (4) under constraint 
(3), results in equal probabilities pj = 1/w. For instance, the ME principle yields equal 
probabilities of 1/6 for each outcome in a die, a result that is also produced by 
Bernoulli’s “principle of insufficient reason”. Conceptually, the two principles are 
equivalent (Jaynes, 1957; Papoulis, 1991), but the ME principle is more effective in 
problems involving asymmetric constraints, as in the following paragraphs. It is easily 
seen that in the equiprobability case the entropy is φ = ln w, which is Boltzmann’s 
formula of entropy. Furthermore, it is seen that as w tends to infinity φ does the same. 
So the case w = ∞ does not have a physical meaning.  
 However, it regains physical meaning if a constraint additional to (3) is con-
sidered. For example, it could be postulated that the mean of the random variable is a 
given quantity µ:  

�
j = 1

∞
 xj pj = µ  (5) 

Incorporating constraints (3) and (5) into equation (4) by means of Lagrange 
multipliers λ0 and λ1, taking the derivative of φ with respect to the unknown pj and 
equating to zero, so as to maximize φ, it is easily obtained that:  

pj = exp(–λ0 – λ1 xj)  (6) 

where λ0 and λ1 are easily calculated from equations (3) and (5). The resulting 
maximum entropy is:  

φ = λ0 + λ1 µ  (7) 

 
 
The entropy in continuous state variables  
 
For a continuous random variable X that takes values x with probability density f(x) 
satisfying 

��
–∞

∞

 f(x) dx = 1  (8) 

the (Shannon or extensive) entropy is by definition (e.g. Papoulis, 1991, p. 559) 

φ := Ε[–ln f(Χ)] = –��
–∞

∞

 f(x) ln f(x) dx   (9) 

Here it should be noted that definition (9) for a continuous variable is not fully 
consistent with definition (4) for a discrete variable. That is, if one partitions the 
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continuous x axis into intervals of length δ, thus forming a discrete representation of 
the random variable, applies entropy definition (4) and takes the limit as δ tends to 
zero, one will find that (4) results in infinite entropy. To overcome it, the entropy of a 
continuous variable is not the limit of φ of the discrete case, but rather the limit of the 
quantity φ + ln δ, which takes a finite value as δ tends to zero. This implies some 
differences in the properties of entropy in the two cases, among which are the 
following: 
(1) the entropy of a discrete variable is always positive whereas that of a continuous 

variable may be positive, zero or negative; 
(2) in the discrete case, the entropy of any one-to-one transformation Y = g(X) of the 

random variable X is exactly φ, i.e. identifies with that of X, but in the continuous 
case it is φ + E[ln|g′(X)|], where g′( ) is the derivative of g( ). 

The last property implies that, in the discrete case, the value of entropy in a certain 
phenomenon does not depend on the metric X (or Y) that is used to quantify the 
description of the phenomenon. However, it depends on the metric X (or Y) in the 
continuous case.  
 If the density f(x) is defined in the interval (a, b) then application of the ME 
principle results in the uniform distribution in (a, b). If any of a and b tends to ±∞, the 
ME principle cannot be applied unless additional constraints are imposed. The most 
common ones, which will also be used in this paper, are the requirements for finite 
first and second moments, i.e. 

Ε[Χ] = ��
–∞

∞

 x f(x) dx = µ1 ≡ µ  (10) 

Ε[Χ 2] = ��
–∞

∞

 x2 f(x) dx = µ2  (11) 

 In physics, constraints similar to (8), (10) and (11) are used to maximize the 
entropy of a system so as to find the distribution of microstates of a system (Müller, 
2003a,b; Papoulis, 1991, p. 573). Interestingly, if X denotes the momentum of mole-
cules or atoms in a gas volume and f(x)dx is the number of molecules or atoms with 
momenta between x and x + dx, then the left sides of constraints (8), (10) and (11) are 
respectively proportional to the macroscopic mass, momentum, and energy of the gas.  
 Application of the ME principle with constraints (8), (10) and (11) results in (e.g. 
Papoulis, 1991, p. 571; Dowson & Wagg, 1973; Tagliani, 1993, 2002a,b): 

f(x) = exp(–λ0 – λ1 x – λ2 x2)  (12) 

where λ0, λ1 and λ2 are Lagrange multipliers that can be calculated combining (12) and 
the constraints. The resulting maximum entropy is:  

φ = λ0 + λ1 µ1 + λ2 µ2 (13) 

Careful inspection of (12) shows that f(x) is the normal distribution; specifically, after 
algebraic manipulations and use of the obvious relationship µ2 = µ2 + σ2 (where σ is 
the standard deviation), it is obtained that: 

λ0 = ln(σ 2π) + 
µ2

2σ2, λ1 = – 
µ
σ2, λ2 = 

1
2σ2, φ = ln(σ 2πe) (14) 
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Substituting these values to equation (12), the well-known formula of the normal curve 
is obtained. Interestingly, equation (14) shows that the entropy of a normally 
distributed variable depends only on its standard deviation, not on its mean. 
 Hydrological variables are non-negative. If it is assumed that x > 0, in addition to 
constraints (8), (10) and (11), then (12) is still valid but for x > 0 (Papoulis, 1991, 
p. 571), thus representing the truncated normal distribution; the entropy is still given 
by equation (13). Specific formulas for the calculations associated with this 
distribution are given in Koutsoyiannis (2005a). Obviously, in this case, equation (14) 
is not valid and the entropy does depend on both µ and σ.  
 An interesting limiting case is when λ2 = 0 (it cannot be negative) and at the same 
time x > 0. The same limiting case emerges if in the application of the ME principle 
constraint (11) is omitted. Careful inspection of (12) in this case shows that f(x) is the 
exponential distribution; specifically, after algebraic manipulations, it is obtained that: 

λ0 = ln µ, λ1 = 1/µ, φ = 1 + ln µ   

f(x) = (1/µ) exp (–x/µ), F*(x) = 1 – F(x) = exp (–x/µ) (15) 
 
 
Generalization of entropic form 
 
Tsallis (1988, 2004) heuristically generalized the Shannon entropy by postulating the 
entropic form:  

φq := 

1 – �
i = 0

w
 pq

i

q – 1   (16) 

where q is any real number. This has been called Tsallis entropy or nonextensive 
entropy and remedies disabilities or inconsistencies in the use of the classical Shannon 
entropy, some of which will be discussed below. It can be straightforwardly checked 
that the limit for q → 1 precisely reproduces the Shannon entropy in (4), i.e. φ1 ≡ φ. As 
in the case of φ, φq achieves its maximum value at equiprobability (pi = 1/w; this 
happens for q > 0 whereas for q < 0 this value corresponds to a minimum). Tsallis 
entropy can be extended to continuous random variables, in which case, assuming a 
non-negative random variable: 

φq = 

1 – ��
0

∞

 [f(x)]q dx

q – 1  (17) 

(Tsallis, 2004, p. 24). Other generalized entropic forms have been also proposed, i.e. 
the Rényi entropy (Rényi, 1970) and the normalized entropy (Landsberg & Vedral, 
1998; Rajagopal & Abe, 1999); these can be expressed as monotonic functions of 
Tsallis φq. As Tsallis entropy has been fruitfully used in several scientific fields 
including physics, chemistry, biology, economics, medicine, computer sciences and 
social sciences (Tsallis, 2004), it will be also used here, in addition to Shannon 
entropy.  
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 In contrast to Shannon entropy whose maximization, with typical constraints such 
as (8), (10) and (11), results in exponential-type distributions, the maximization of φq 
with these constraints yields a power-type distribution, i.e.:  

f(x) = [1 + κ (λ0 + λ1 x + λ2 x2)] –1 – 1/κ (18) 

φq = (κ + 1) (λ0 + λ1 µ1 + λ2 µ2) (19) 

where κ := (1 – q)/q (see derivation in Koutsoyiannis, 2005a). It is easily seen that for  
κ → 0 (q → 1), (18) and (19) become identical to (12) and (13) respectively, which 
correspond to Shannon entropy. The Lagrange multipliers λi can be estimated 
combining (18) and constraints (8), (10) and (11). This case, however, is difficult to 
handle analytically, because complicated formulas appear.  
 Again, a simple limiting case emerges when λ2 = 0. Combining (18) and (8) it is 
obtained that λ1 = (1 + κ λ0)–1/κ; furthermore, setting λ = λ1

–1–κ, equation (18) yields: 

f(x) = 
1
λ 
�
�
�

�
�
�1 + 

κ x
λ

–1 – 1/κ

           F*(x) = 1 – F(x) = 
�
�
�

�
�
�1 + 

κ x
λ

–1/κ

 (20) 

which is the Pareto distribution for x > 0. If one sets Y = X + λ/κ, so that y > λ/κ, then 
one obtains the Pareto distribution of the form (1). Furthermore, if κ = 0, (20) identifies 
with the exponential distribution (15). 
 
 
THE APPLICATION OF THE MAXIMUM ENTROPY PRINCIPLE FOR 
HYDROLOGICAL VARIABLES 
 
General considerations 
 
In this section the ME principle will be applied to hydrological variables. It is assumed 
that a hydrological variable can be represented as a random variable X, which 
possesses a positive mean µ and standard deviation σ (so that the second moment about 
the origin is µ2 = µ2 + σ2). It should be noted that in the proposed framework the origin 
should be identical to the lower bound of the variable examined; this concerns 
especially the mean µ. If a variable of interest has a lower bound different from zero, 
then a shift of origin (to make it identical to the lower bound) is necessary for the 
available time series before estimation of µ. Without loss of generality, the variable X 
can be standardized by dividing it by µ, so that it has mean 1 and standard deviation 
σ/µ, which is the CV of the original X. Here, the value of σ/µ is not regarded as merely 
a statistic that can be used, for instance, in the parameter estimation of a given 
distribution. Rather, it will be used to determine which is the appropriate distribution 
of the studied variable. This will be done seeking the distribution that maximizes the 
entropy for the given σ/µ, i.e. applying the ME principle, which, in the author’s view, 
corresponds to the hypothesis that nature behaves in a manner that makes uncertainty 
as high as possible. 
 It can be easily shown that the entropies φ′ and φ′q of the standardized variable X′ 
= X/µ are related to the respective ones of the original X by: 

φ′ = φ – ln µ, φ′q = µq – 1 φq + 
1 – µq – 1

q – 1  (21) 
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Furthermore, φ′ and φ′q will be called standard entropies and, for convenience, the 
primes in the notation will be omitted unless there is risk of confusion.  
 In seeking the distribution that maximizes uncertainty, the extensive entropy φ will 
be used, unless this results in infeasible situations, when the nonextensive entropy φq 
will be used instead. When the variation σ/µ is low, extensive entropy is sufficient; 
thus the cases of low and high variation will be distinguished.  
 
 
Variables with low variation  
 
Application of the ME principle for the conditions set results in (12), which is the 
truncated normal distribution. If σ/µ is very low, the truncation is negligible, so the 
resulting distribution is the symmetric, bell-shaped normal distribution. As σ/µ 
increases, the truncation becomes important and at the critical value σ/µ = π/2 – 1 = 
0.75551 (for which λ1 = 0) the mode of the distribution becomes zero, so the 
distribution becomes (inverse) J-shaped. It continues to be J-shaped up to σ/µ = 1, 
whence the truncated normal identifies with the exponential distribution (λ2 = 0). In the 
exponential case, as obtained from (21) and (15), the standard Shannon entropy takes 
its highest possible value which is unity.  
 
 
Variables with high variation—extensive entropy approach 
 
For CV even higher (σ/µ > 1) the ME distribution, in terms of extensive entropy, does 
not exist (Dowson & Wragg, 1973). To clarify the nonexistence, it will be temporarily 
assumed that the domain of X is the finite interval [0, b), with b > 0. In this case, the 
ME distribution exists and has the form (12) with λ2 < 0, so that the density function is 
U-shaped. As the domain of the variable becomes wider, i.e. as b → ∞, λ2 → 0, so the 
distribution tends to the exponential, which however has σ/µ = 1, not equal to the 
required value. Thus, the exponential distribution is the limiting case for the extensive 
entropy concept, and its extensive standard entropy φ = 1 must be regarded as the 
upper limit for any distribution.  
 The nonexistence of the ME distribution for the case examined does not preclude 
comparison of specified alternative distributions to detect which of them results in the 
maximum, among them, entropy and thus uncertainty. To this aim, a systematic 
parametric comparison is done, which is based on the following probability density 
function, devised for this purpose: 

f(x) = (1 + κ λ0 + κ λ1 xν1)
–1 – 1/κ

 xν2 – 1 (22) 

This comprises four parameters: the scale parameter λ1 and the shape parameters ν1, ν2 
and κ; λ0 should not be regarded a parameter but a constant having a value that assures 
satisfaction of (8) (conservation of mass). It can be observed that the variable X ν1  has 
Beta Prime (also known as Beta of the second kind) distribution (Evans et al., 2000); 
thus the distribution of X will be called Power-transformed Beta Prime (PBP). This 
distribution merges several exponential-type and power-type distributions. As seen in 
Table 1, several of the common distributions, such as the exponential-type Gamma and 
Weibull and the power-type Pareto, are special cases of PBP. The Beta Prime  
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Table 1 Special cases of the PBP distribution. 

Limit conditions Density function Reference 
κ → 0  f(x) = exp(–λ0 – λ1 xν1) xν2 – 1  PBP/L1 
κ → 0, ν1 = 1 f(x) = exp(–λ0 – λ1 x) xν2 – 1  Gamma 
κ → 0, ν2 = ν1 f(x) = exp(–λ0 – λ1 xν1) xν1 – 1  Weibull 
ν2 = ν1 = 1 f(x) = (1 + κ λ0 + κ λ1 x)

–1 – 1/κ
  Pareto 

ν1 = 1 f(x) = (1 + κ λ0 + κ λ1 x)
–1 – 1/κ

 xν2 – 1  Beta prime 

κ → ∞, κ λ0 → κ0, κ λ1 → κ1 f(x) = 
xν2 – 1

1 + κ0 + κ1 xν1 
PBP/L2 
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Fig. 1 Maximized, over varying ν1 and specified κ¸ entropy of the PBP distribution 
with µ = 1 and σ/µ = 1.5, and optimal value of parameter ν1 as functions of the 
parameter κ.  

 
 
distribution, more rarely used in hydrology (Yevjevich, 1972; Koutsoyiannis, 2004a) is 
another special case. Two additional limiting special cases, denoted as PBP/L1 and 
PBP/L2, emerge when the shape parameter κ takes its extreme values, i.e. when κ → 0 
and κ → ∞, respectively. The normal distribution can be regarded, too, as a special 
case of this generalized distribution, as it is known that the Gamma distribution for 
high values of shape parameter tends to the normal distribution. Thus, given that many 
of the distributions used in hydrology are special cases of (22), this generalized density 
can serve as a basis for an intercomparison of them in terms of the resulting entropy.  
 An extended numerical investigation was done based on (22). The interested 
reader may find details (including equations for the handling the PBP and its special 
cases) in Koutsoyiannis (2005a); here a single example is provided (Fig. 1), for µ = 1 
and σ/µ = 1.5. The two parameter special cases Gamma and Weibull (corresponding to 
κ = 0) as well as the Pareto case (κ > 1) are easy to fit given µ and σ/µ. The resulting 
entropies of these three cases are marked in Fig. 1. Clearly, the Pareto case yields 
entropy significantly higher than the exponential type Gamma and Weibull. In 
addition, Fig. 1 shows the resulting entropy of the generalized four-parameter form of 
(22). Specifically, for each specified value of κ, the value of ν1 that maximizes 
Shannon entropy was calculated and the maximized entropy has been plotted in Fig. 1 
vs κ. It is observed that the maximized entropy increases slightly with the increase of 
κ, without departing significantly from the Pareto case. The limiting exponential-type  
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Fig. 2 Maximized standard entropy and maximizing distribution vs the coefficient of 
variation σ/µ. 

 
 
case PBP/L1 (for κ → 0) gives entropy higher than in the Gamma and Weibull cases  
and lower than in the Pareto case. The limiting power-type case PBP/L2 (for κ → ∞) 
gives entropy even higher than in the Pareto case.  
 However, a more careful inspection of the limiting PBP/L2 distribution shows that 
it has problems related to its observability. Its probability plot in comparison with that 
of the exponential distribution (see Koutsoyiannis, 2005a) shows that the two are 
indistinguishable except for very high return periods. So, even if a hydrological 
process followed the PBP/L2, its observation, based on a typical record with length, 
say, 100 years or less, would indicate that the distribution is exponential and the CV is 
virtually unity. Thus, a sample estimate of CV greater than unity prompts for rejection 
of PBP/L2. Such problems do not appear with the Pareto distribution, which differs 
from the exponential distribution in the entire domain.  
 This must be regarded as a deficiency of the extensive entropy approach. A second 
deficiency is the fact that for growing σ/µ above 1, which intuitively signifies 
increasing variability and increasing uncertainty, the entropy does not increase. This is 
depicted in Fig. 2, where the maximized standard entropy is plotted vs σ/µ. For σ/µ ≤ 1 
the method provides a clear result that the ME distribution is the truncated normal 
(becoming exponential at the limit σ/µ = 1) and the entropy is an increasing function of 
σ/µ. For σ/µ > 1 the Shannon entropy of the Pareto distribution, also plotted in Fig. 2, 
is slightly decreasing function of σ/µ, which is contrary to the notion of increasing 
uncertainty and rather unreasonable.  
 In conclusion this heuristic approach, is insufficient to yield a clear result of a ME 
distribution and incorporates an inconsistency. However, the approach was very 
helpful to demonstrate that (a) the exponential-type distributions like Gamma and 
Weibull do not comply with the ME postulate and (b) a power-type distribution at least 
for high return periods should be expected based on the ME principle. 
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Variables with high variation—nonextensive entropy approach 
 
The deficiencies of the extensive entropy approach are overcome using the generalized 
nonextensive entropy approach. In this case, there is no theoretical upper limit for the 
value of σ/µ. Once the value q is specified, application of the ME principle with 
constraints (8), (10) and (11) results in (18). However, q, the generalized entropy 
qualifier, should not be chosen in an arbitrary manner; its selection is a difficult task as 
described in Tsallis (2004, p. 23). Here a simplified approach was followed, suitable to 
the exploratory character of the study. To establish consistency with the extensive 
entropy approach discussed above, it was assumed that q should be as close to unity as 
possible (equivalently, κ should be as close to zero as possible). In this case, if σ/µ ≤ 1, 
κ will be zero, and the ME distribution will be the truncated normal. If σ/µ > 1, κ will 
be positive but as small as possible. Thus, its value can be estimated assuming that the 
quadratic term in (18) vanishes (λ2 = 0), whence the Pareto distribution (20) emerges. 
This assumption makes the exponential distribution the common limiting distribution 
of both the truncated normal distribution, when σ/µ → 1 from below, and the Pareto 
distribution when σ/µ → 1 from above. This simplified approach incorporates a 
weakness, i.e. the dependence of q on the time scale on which the process is studied: at 
larger time scales a process exhibits smaller CV, so the approach will yield higher q. 
An improved approach is currently studied and will be reported in the near future.  
 
 
Consequences of ME principle in hydrology  
 
In conclusion, the results of this extended discussion give the following picture of what 
one should expect if the ME principle applies to nature, in this case to hydrological 
processes: 
1. When the variation σ/µ is smaller than 1, the truncated normal distribution applies 

and the uncertainty is described by the extensive entropy; this distribution is bell-
shaped for small σ/µ and becomes J-shaped for σ/µ greater than about 0.75. 

2. When σ/µ is greater than 1, the Pareto distribution applies and the uncertainty is 
described by the nonextensive entropy; this distribution is J-shaped. 

3. The limiting cases σ/µ → 0 and σ/µ = 1 are described by the normal and 
exponential distributions, respectively.  

 In this manner, the inconsistency of the extensive entropy approach between 
variability and entropy for high CV was eliminated. This is shown in Fig. 2, where in 
addition to the extensive entropy, the nonextensive standard entropy of the Pareto case 
is plotted, which is an increasing function of σ/µ. 
 The resulting ME distributions for a wide range of CV are depicted in Fig. 3 in 
terms of probability density functions and in Fig. 4 in terms of distribution functions 
or, more precisely, plots of the random variate vs return period T (semi-logarithmic 
plot, on which the exponential distribution appears as a straight line). All plots 
correspond to µ = 1. Particularly, Fig. 3(a) emphasizes the wide spectra of shapes of 
densities, from exponential-type bell-shaped to power-type J-shaped, which are all 
obtained by the unique ME principle and from a single index σ/µ. One may think that 
the differences in densities in Fig. 3(a) are due to different standard deviations, which 
vary from 0.1 to 100. Therefore, the typical standardized variate (x – µ)/σ, which has  
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Fig. 3 Plots of the ME probability density functions vs (a) the random variate x, and 
(b) the standardized variate (x – µ)/σ, for µ = 1 and for several values of the coefficient 
of variation σ/µ. The ME densities are truncated normal for σ/µ < 1, exponential for 
σ/µ = 1 and Pareto for σ/µ > 1. 

 
 
zero mean and unit standard deviation, was also used to construct another form of the 
plot, shown in Fig. 3(b). Again, the differences in shapes of ME densities are obvious. 
Here, it should be underlined that the latter kind of standardization, which has been of 
wide use in hydrological statistics, may be a good practice for variables with normal 
distribution but turns to be a bad practice for most hydrological variables, as it hides 
the important index σ/µ, which combined with ME determines the shape of the 
distribution.  
 
 
CASE STUDIES 
 
In this section, the theoretical results are tested based on real-world data. Several long 
records of rainfall, runoff and temperature at scales hourly to annual were examined; 
among these eight are presented as listed in Table 2 (some additional ones are given in  
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Table 2 List of the case studies and respective data sets and their characteristics. 

Case 
no. 

Process (a) 
and time 
scale (b) 

Station Data 
period 

Period 
of year 

Record 
length (c) 
(years) 

Number 
of data 
values (d) 

Units Mean CV and ME 
distribu-
tion(e) 

MSE (f) 

1 P/H Athens 1927–
1996 

Jan. 70 (65) 48 397 
(2919) 

mm 1.07 1.47/P 1.32 

2 P/A Aliartos 1907–
2003 

Year 96 96 mm 658.4  0.24/TN –0.008 

3a (g) 0.34(i) 0.95/TN 0.998 
3b (g) 

P/D 168 stations 
worldwide  

1822–
2002 

Year 17922(h) 17 922 - 
0.28(i) 1.19/P 1.160 

4 T/D Athens 1930–
2003 

Jan. 74 2294 K 282.2  0.01/N –3.19 

5 T/D Athens 1930–
2003 

Apr. 74 2220 K 388.4  0.0095/N –3.22 

6 T/D Athens 1930–
2003 

Aug. 74 2294 K 300.2  0.0075/N –3.47 

7 T/A Geneva 1753–
1980 

Year 228 228 K 282.8  0.0024/N –4.62 

8 R/D Boeoticos 
Kephisos 

1978–
2003 

Year 25 (23) 8402 mm 0.38 
0.45(i) 

1.29/P  
1.19/P 

1.160 

(a) P: precipitation (rainfall); T: temperature; R: runoff.  
(b) H: hourly; D: daily; A: annual.  
(c) In parentheses the equivalent years if missing data are not counted.  
(d) In parentheses the number of values without counting the zero values.  
(e) N: normal; P: pareto; TN: truncated normal. 
(f) Maximized standard entropy.  
(g) Time series above threshold, standardized; 3a and 3b correspond to different values of threshold (see text).  
(h) Number of station years of the unified record.  
(i) Mean, conditional on being greater than threshold, minus threshold. (see text).  
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Fig. 4 Graphs of the ME distribution functions (shown as plots of the random variate 
vs return period) for µ = 1 and for several values of the coefficient of variation σ/µ. 
The ME distributions are truncated normal for σ/µ < 1, exponential for σ/µ = 1 and 
Pareto for σ/µ > 1. 

 
 
Koutsoyiannis, 2005a). The empirical distribution functions (based on Weibull plotting 
positions) are graphically compared with the ME theoretical distributions. The graph-
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ical comparison is consistent with the exploratory character of this study. All 
distribution plots are constructed in the form of Fig. 4, so that the shape of the 
distribution can be easily recognized visually and related to that of the limiting 
exponential distribution and, eventually, to the theoretical results shown in Fig. 4. The 
exponential as well as the normal distribution are also plotted in all cases, as sort of 
“benchmark” distributions.  
 Figure 5 depicts the distribution of hourly rainfall (nonzero values) in Athens, 
Greece, for the month of January. Athens is a dry place with mean annual rainfall 
around 400 mm, but January is the wettest month. The empirical CV is 1.47 > 1; thus 
the ME distribution is Pareto. Clearly, the figure shows that, indeed, the Pareto 
distribution fits perfectly the empirical data and departs significantly from both the 
exponential and normal distribution. “Imperfection” of the Pareto fitting to three (out 
of 2919) points, those around T = 20 years and beyond, may reflect just the high 
uncertainty of empirical estimation of large T.  
 Figure 6 depicts the distribution of annual rainfall depth in Aliartos, Greece. 
Aliartos is less than a hundred kilometres to the north of Athens but its rainfall is 60% 
higher. The available rainfall record here is longer than that of Athens. Now the 
empirical σ/µ is 0.24 << 1; thus the ME distribution is the truncated normal, which due 
to low σ/µ is almost indistinguishable from the normal distribution. The figure shows 
that this distribution is very close to the empirical one and that the shape of both is 
extremely divergent from that of Fig. 5. Again, some imperfections appear for very 
high T. Apart from estimation uncertainty, in this case there may be another 
explanation. As in small scales (as in the case of Fig. 5) the Pareto behaviour domi-
nates, it is anticipated that the most extreme values of rainfall must be better described 
by a power-type law. Thus, the truncated normal distribution must be regarded as an 
appropriate model for typical return periods but not for the very high ones. Further  
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Fig. 5 Plot of historical hourly rainfall depth in Athens for the month of January vs 
return period, in comparison to Pareto, exponential and normal distributions (due to 
the high density of empirical points for return periods smaller than 5 years, the curve 
of the Pareto distribution is not distinguished because it lies just above the empirical 
points). 
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Fig. 6 Plot of historical annual rainfall depth in Aliartos vs return period, in 
comparison to truncated normal, exponential and normal (almost indistinguishable 
from truncated normal) distributions.  
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Fig. 7 Plot of daily rainfall depth from the unified standardized sample above 
threshold, formed from data of 168 stations worldwide, vs return period, in 
comparison to Pareto, exponential, truncated normal and normal distributions. 
Exponential-type and Pareto distributions were fitted assuming conditional coefficient 
of variation 0.95 and 1.19, respectively. 

 
 
research on this, i.e. the effect of a power-type distribution on small scales to the tail of 
the distribution on aggregate scales is currently ongoing and will be reported in the 
near future.  
 The next example is the most interesting one due to its practical significance. This 
example comes from an earlier study (Koutsoyiannis, 2004b) related to extreme daily 
rainfall maxima worldwide. In this study, daily rainfall records from 169 stations 
worldwide were analysed and it was found that several dimensionless statistics, 
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including CV, of the annual maximum series are virtually constant worldwide, except 
for an error that can be attributed to a pure statistical sampling effect. This enabled the 
formation of a compound series-above-threshold for 168 of the stations. To this aim, 
all series were standardized by their mean and merged in one sample with length 
17 922 station-years. This sample is re-examined here in light of the ME principle. Its 
empirical distribution is depicted in Fig. 7, where values lower than 0.79 are not 
shown, as this number is the lowest value of the merged series-above-threshold.  
 Before studying the sample, a few observations should be made about handling of 
the distributions when a series-above-threshold is available. To this aim, the variable  
Y = X – c is introduced, where c denotes a threshold, and the survival function of Y 
conditional on being positive, i.e. FY

*
(y|Y > 0), is studied. If FX

*
(x) denotes the 

(unconditional) survival function of X, it is easily obtained that 

FY
*
(y|Y > 0) = 

FX
*
(y + c)

FX
*
(c) 

  (23) 

Based on (23) it can be shown that if FX(x) is truncated normal, then FY(y|Y > 0) is 
again truncated normal with the same λ2. After algebraic manipulations, it can be seen 
that as c increases, both the conditional mean (µc) and standard deviation (σc) decrease 
and the conditional CV (σc/µc) increases, approaching unity as c → ∞. In other words, 
as the threshold increases, the conditional distribution of Y tends to become 
exponential.  
 In the case of the Pareto distribution, the behaviour is different. From (23) and (20) 
it is obtained that, if FX(x) is Pareto, then FY(y|Y > 0) is again Pareto, which can be 
expressed as in (20) with same shape parameter κ and with scale parameter λ replaced 
by λ + κ c. Based on these observations it can be seen that, as c increases, both µc and 
σc increase (see Fig. 8) while σc/µc remains constant (it depends on κ only). In other 
words, as the threshold increases, the same Pareto distribution applies except for a 
change in the scale parameter.  
 Equation (23) and the observations of the previous two paragraphs enable the 
fitting of the distribution of the variable of interest X if a sample of Y is available. 
Coming again to the case study with the sample of 17 922 station years with threshold 
c = 0.79, the CV of Y is 0.95, i.e. very close to, but lower than, unity. This value 
implies a truncated normal distribution, close to the exponential. However, Fig. 7, 
where the empirical distribution of this sample is depicted and compared to this and 
other theoretical distributions, does not validate the appropriateness of the truncated 
normal distribution. 
 Here one must suspect that the value 0.95 of σc/µc may contain an estimation error, 
and investigate it further. Indeed, Fig. 8 shows that a slight increase of the threshold c 
results in σc/µc higher than unity. Above a threshold c = 0.9, σc/µc becomes virtually 
constant, with average value 1.19. This clearly indicates a Pareto ME distribution and 
this is verified in both Fig. 7 and Fig. 8. In the latter, it is observed that, as c increases, 
both σc and µc follow the Pareto pattern (increasing functions) rather than the truncated 
normal pattern (decreasing functions). The ME value of κ for σ/µ = 1.19, is 0.15, i.e. 
equal to that estimated in Koutsoyiannis (2004b) using a weighted least-squares 
method.  
 The next variable examined here is temperature, which is of interest to hydrology 
due to its direct link to evaporation. To apply the ME theoretical framework to tempe- 
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Fig. 8 Conditional mean (µc), standard deviation (σc) and coefficient of variation 
(σc/µc), as functions of the threshold c, as calculated from the empirical 168-station 
rainfall sample of Fig. 7, also compared to theoretical curves for the truncated normal 
and Pareto distributions.  

 
 
rature, one may think that the non-negativity constraint does not apply to this variable. 
In this case, as explained earlier, the ME principle results in the normal distribution. 
However, more precisely, it should be observed that temperature is bounded from 
below by the absolute zero (zero kelvin), so that it is again a non-negative variable if 
expressed in kelvins. The second option (that with the non-negative constraint) was 
preferred here as it is more precise and in accord to the formalism used in all other 
cases; as seen in the next paragraph the result is again the normal distribution, i.e. both 
options are practically equivalent.  
 Daily temperature records for Athens were used in this case, whose distributions 
for the months of January (the coldest), August (the hottest, together with July) and 
April are depicted in Fig. 9. The very small values of CV in this case (0.01, 0.0075 and 
0.0095), imply normal ME distribution (truncated normal is indistinguishable from 
normal). So, even at a scale as fine as daily, ME does not imply a power-type law but 
an exponential-type law. This is validated in Fig. 9, which depicts comparison of the 
empirical and normal distribution. This is also the case for larger time scales such as 
annual. To make an example for the annual scale, one of the longest available tempera-
ture records worldwide was used, that of Geneva (228 years). The CV in this case is 
even lower, 0.0024, which again implies a normal distribution. This is validated in 
Fig. 10, which depicts comparison of the empirical and normal distributions.  
 The last variable examined is runoff, in which the application of the ME principle 
is more difficult. In a detailed approach, one should distinguish in runoff the baseflow 
component and the flood component, and apply the ME principle separately for each. 
In the exploratory approach followed here such a separation will be not done. The data 
used are for the Boeoticos Kephisos River basin, the basin where Aliartos raingauge 
(mentioned earlier) is located. A significant part of the 2048 km2 area of this basin lies 
on karst, which leads to a significant baseflow component. This implies a non-
negligible smoothing of the rainfall input for small and medium rainfall, simul-
taneously amplifying the variability for high rainfall, when floods occur. The river is 



Demetris Koutsoyiannis 
 
 

 
 
Copyright  2005 IAHS Press  

400 

 

270

280

290

300

310

0.01 0.1 1 10 100

T  (years)

x  (K)

Empirical, January Normal, January
Empirical, August Normal, August
Empirical, April Normal, April
Exponential, April

 
Fig. 9 Plot of historical mean daily temperature in Athens for three months of the year 
vs return period, in comparison to the normal and exponential distributions (the 
exponential distributions for months January and August are almost indistinguishable 
from that of April). 
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Fig. 10 Plot of historical mean annual temperature in Geneva vs return period, in 
comparison to the normal and exponential distributions.  

 
 
almost in natural condition, as no large constructions such as dams have been built; 
however, the flow regime is artificially modified in summer months, in which the 
natural flows are minimal, as farmers exploit river flow for irrigation and almost no 
water reaches the river outlet. This will be taken into account in the application of the 
ME principle as discussed below.  
 Measurements in the river outlet have been performed since 1907, which makes 
the resulting runoff time series the longest available in Greece (96 years). Unfortun-
ately, the current digitized archive is for the monthly scale only. For the daily scale 
only runoff data of 23 years length are available in the archive (see Table 2). [The  
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Fig. 11 Conditional mean (µc), standard deviation (σc) and coefficient of variation 
(σc/µc), as functions of the threshold c, as calculated from the Boeoticos Kephisos 
daily runoff data, also compared to theoretical curves for the Pareto distribution (1 
mm corresponds to 23.7 m3 s-1).  
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Fig. 12 Plot of daily runoff of Boeoticos Kephisos vs return period, in comparison to 
Pareto, exponential and normal distributions (1 mm corresponds to 23.7 m3 s-1; due to 
the high density of empirical points for return periods smaller than 1 year, the curve of 
the Pareto distribution is not distinguished because it lies just over the empirical 
points). 

 
 
empirical distribution of all available daily data values are depicted in Fig. 12.] For the 
reasons already explained, the interest here is focused on the higher values of 
discharge, which are not affected by the baseflow mechanism and the summer 
regulations. The CV of the data set is 1.29 and, if the artificially induced zero values 
are excluded, it becomes 1.05. This implies a Pareto distribution but the proximity of 
the value to 1 calls for a more careful analysis. An analysis similar to that of the 
extreme rainfall case study discussed earlier was performed, which is consistent with 
the focus on the high values. Application of a threshold to the series gradually 
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increases the CV as shown in Fig. 11 up to a value of 1.19 for a threshold equal to the 
median of the original series (0.245 mm); no further increase is observed above this 
value (expect for some irregular fluctuations). Based on the value σ/µ = 1.19 the Pareto 
distribution was fitted (κ = 0.15), as shown in Fig. 12. It is observed that the Pareto 
distribution is in good agreement with the empirical distribution, whereas exponential 
and normal distributions depart significantly. Although the fitting was based on a 
threshold equal to the median, the empirical distribution plot in Fig. 12 includes also 
the lower values. It is observed that, even below the threshold, i.e. in values governed 
by the base flow mechanism, this Pareto distribution can be a good approximation. On 
larger scales up to annual, analyses with the complete 96-year sample yielded similar 
results as in the rainfall case; for example, the annual CV is 0.41 (much lower than in 
the daily time series yet higher than that of the annual rainfall which is 0.24 as 
discussed above), which implies a truncated normal distribution type; this was verified 
in a probability plot (similar to that of Fig. 6, not included in the paper for brevity). 
 
 
SYNOPSIS, CONCLUSION AND DISCUSSION 
 
The principle of maximum entropy (ME) is used to explain the statistical distributions 
followed by hydrological variables. In this context, maximum entropy is interpreted as 
maximum uncertainty. When feasible, the extensive or Shannon entropy is used as a 
measure of uncertainty; otherwise the generalized nonextensive or Tsallis entropy is 
used instead. The only conditions used for the maximization of entropy are that a 
hydrological variable is non-negative with a specified coefficient of variation σ/µ.  
 The theoretical analyses show that two alternative distribution types emerge by the 
application of the ME principle. Specifically, when the variation σ/µ is smaller than 1, 
the uncertainty can be described by the extensive entropy, which results in the truncated 
normal distribution; this distribution is bell-shaped for small σ/µ and becomes (inverse) 
J-shaped for σ/µ greater than about 0.75. When σ/µ is greater than 1, the uncertainty is 
described by the nonextensive entropy, which results in J-shaped power-type (Pareto) 
distributions. In addition, the normal distribution appears as the limit of the truncated 
normal when σ/µ → 0. Besides, the exponential distribution appears as the limit of both 
the truncated normal and the Pareto distribution when σ/µ = 1.  
 Testing of these theoretical results with numerous hydrological data sets validates 
the applicability of the ME principle. Specifically, given that rainfall possesses high 
variation at small time scales (e.g. hourly or daily), a Pareto distribution is expected 
and this is validated by the data. As the time scale becomes larger (e.g. annual), the 
variation decreases and the truncated normal distribution applies; this is also validated 
by the data. Statistics of runoff exhibit more or less similar behaviour with those of 
rainfall. In contrast, absolute temperature exhibits very low variation even at the finest 
time scales and thus the normal distribution applies at all times scales; again this is 
validated by the data.  
 Several issues related to the application of the ME principle to hydrological 
processes should be addressed with further research; some that are investigated in 
ongoing research have already been indicated earlier. The empirical investigation of 
applicability of the ME principle in a wide range of hydrological series worldwide will 
provide additional insights and potentially enhance the confidence in the method or 
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trace its limitations. The theoretical and empirical investigation of the distributional 
behaviour of a variable at many time scales simultaneously is another important issue. 
This is related to a more rational choice of the nonextensive entropy qualifier q and is 
especially useful for the behaviour in the tails when the variation at large scales is low 
and at small scales high (> 1, thus implying a power-type distributional behaviour). 
The uncertainty of the empirical estimation of CV from historical data is also a 
significant issue given the important role of this indicator in the resulting ME 
distribution. Potential physical explanations of the observed values of σ/µ in different 
processes and potential empirical investigation of the geographical variation or 
invariance of this coefficient worldwide (as in the case for rainfall extremes, where, as 
mentioned above, it was found to be almost invariant worldwide) will enhance the 
applicability of the ME principle.  
 In conclusion, the ME principle seems to be fundamental in hydrology, as it 
explains the distributional behaviour of hydrological variables. The dominance of 
uncertainty, implied by the applicability of the ME principle and the agreement of 
theoretical results and observations, need not be regarded as a disappointing attribute 
for scientists and engineers. In contrast, the knowledge that uncertainty dominates is a 
very important and helpful knowledge, as it can be used to establish the probabilistic 
law of a certain phenomenon and to design structures more safely. Thus, knowing that, 
as a result of the ME principle, the distribution of rainfall at a small time scale is 
power- rather than exponential-type will lead to the use of EV2, rather than EV1, 
distribution of maximum rainfall. This, in turn, will help avoid underestimation of 
design rainfall, which unfortunately was the rule for several tens of years 
(Koutsoyiannis, 2004a,b). In this respect, maximization of uncertainty can be 
paralleled to Socrates’ view, quoted in the beginning of the Introduction, who regarded 
that his knowledge of ignorance made him the wisest man, as it is learned from his 
Apology by Plato. 
 In terms of the state scaling law in (1), which has been discussed by many as 
applicable to hydrology, both the theoretical analyses and the empirical evidence do 
not validate it precisely. State scaling is only an approximation, merely valid when 
processes have high variation and when the return period is high. A better 
approximation, produced by the ME principle, is the Pareto distribution in the form 
(20), equally simple yet more accurate than (1). In cases of low variation, state scaling 
disappears and the normal distributional behaviour, which does not have scaling 
properties, emerges. Interestingly, however, as discussed in the second part of the 
study (Koutsoyiannis, 2005b), the normal distribution combined with positive 
autocorrelation of a process results in time scaling behaviour due to the ME principle.  
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