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Abstract This report contains additional information for the paper Uncertainty, entropy, 

scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological 

processes and state scaling, including mathematical derivations and complete sets of 

equations, complete descriptions of numerical investigations and additional case studies.  

1. Derivation of ME distribution for non-extensive entropy 

For a non-negative continuous random variable Tsallis entropy is written 

 φq = 

1 – ⌡⌠
0

∞

 [f(x)]q dx

q – 1 . (A1) 

The constraints considered for entropy maximization, apart from the non-negativity one are 

(a) basic property of f(x), 

 ⌡⌠
0

∞

 f(x) dx = 1,  (A2) 

(b) finite first moment,  

  Ε[Χ] = ⌡⌠
0

∞

 x f(x) dx = µ1 ≡ µ,  (A3) 

and (c) finite second moment,  

 Ε[Χ 2] = ⌡⌠
0

∞

 x2 f(x) dx = µ2  (A4) 
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By virtue of (A2), (A1) can be written alternatively in the form 

 φq = ⌡⌠
0

∞

 f(x) 
1 –  [f(x)]q – 1

q – 1  dx (A5) 

To maximize φq assuming q > 0, constraints (A2), (A3) and (A4) are incorporated into (A5) 

with appropriate Lagrange multipliers λ΄0, λ΄1 and λ΄2, so that 

 φq = ⌡⌠
0

∞

 f(x) 
1 –  [f(x)]q – 1

q – 1  dx – λ΄0 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

⌡⌠
0

∞

 f(x)dx – 1    

  – λ΄1 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

⌡⌠
0

∞

 x f(x)dx – µ1  – λ΄2 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

⌡⌠
0

∞

 x2 f(x)dx – µ2  (A6) 

or 

 φq = ⌡⌠
0

∞

 f(x) 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1 –  [f(x)]q – 1

q – 1  – λ΄0 – λ΄1 x – λ΄2 x2  dx + λ΄0 + λ΄1 µ1 + λ΄2 µ2 (A7) 

Now, it can be observed that if the bracketed term in (A7) is by identity zero, then functional 

variation with respect to the unknown f(x) (i.e., ∂φq / ∂f(x)) will be zero, which ensures 

achieving the maximum. Thus, equating the bracketed term to zero, after algebraic 

manipulations, it is obtained, 

 f(x) = [1 + (1 – q) (λ΄0 + λ΄1 x + λ΄2 x2)] –1/(1 – q) (A8) 

and  

 φq = λ΄0 + λ΄1 µ1 + λ΄2 µ2 (A9) 

Setting κ = (1 – q)/q and λi = λ΄i q, (A8) and (A9) can be written respectively as  

   f(x) = [1 + κ (λ0 + λ1 x + λ2 x2)] –1 – 1/κ (A10) 

and 

 φq = (κ + 1) (λ0 + λ1 µ1 + λ2 µ2) (A11) 

2. Handling of the truncated normal distribution 

The equations required for the handling of the truncated normal distribution are gathered in 

Table A1. 
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Table A1. Equations of the truncated normal distribution. 

Description Equation 
Refer-

ence 

Density 
function 

f(x) = exp(–λ0 – λ1 x – λ2 x2)  (T1.1) 

Constraints x ≥ 0, λ2 ≥ 0  (T1.2) 

Distribution 
function 

F(x) = 1 – 
1 – erf(ξ + λ2 x)

1 – erf(ξ) ,   ξ := 
λ1

2 λ2
 (T1.3) 

First moment µ1 = 
exp(–ξ2)

π λ2 [1 – erf(ξ)]
 – 

ξ
λ2

 (T1.4) 

Second 
moment 

µ2 = 
1 + 2ξ2

2λ2
 – 

ξ exp(–ξ2)
π λ2 [1 – erf(ξ)]

  (T1.5) 

Entropy  φ = λ0 + λ1 µ1 + λ2 µ2 
(T1.6) 

Determination 
of constant λ0 

π exp(ξ2 – λ0) [1 – erf(ξ)]
2 λ2

 = 1 (T1.7) 

Determination 
of λ2 From (T1.4) 

 

Determination 
of ξ 

µ  
2

µ2
1

 = π exp(ξ2) [1 – erf(ξ)] { π (1 + 2ξ2) exp(ξ2) [1 – erf(ξ)] – 2ξ}
2{ π ξ exp(ξ2) [1 – erf(ξ)] – 1}2  (T1.8) 

Definition of 
erf(z) (a) 

erf(z) := 
2
π

 ⌡⌠
0

z

 exp(–t2) dt (T1.9) 

(a) erf( ) is the error function.   

3. Handling of the Power-transformed Beta Prime distribution 

The density of the Power-transformed Beta Prime (PBP) distribution is given by 

 f(x) = (1 + κ λ0 + κ λ1 xν1)
–1 – 1/κ

 xν2 – 1 (A12) 

This comprises four parameters, the scale parameter λ1 and the shape parameters ν1, ν2 and κ; 

λ0 should not be regarded a parameter but a constant having a value that assures satisfaction of 

(A2). Table A2 gathers all required equations for the handling of this distribution. This 

distribution merges several exponential-type and power-type distributions, such as the 
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exponential-type Gamma and Weibull, the power-type Pareto, and the Beta Prime 

distribution. Two additional limiting special cases, denoted as PBP/L1 and PBP/L2, which 

could be named respectively the enhanced exponential-type and the enhanced power-type 

distributions, emerge when the shape parameter κ takes its extreme values, i.e. when κ → 0 

and κ → ∞, respectively. Equations for the handling of these cases are gathered in Table A3 

and Table A4, respectively.  

Table A2. Equations of the PBP distribution. 

Description Equation Reference

Density function f(x) = (1 + κ λ0 + κ λ1 xν1)
–1 – 1/κ

 xν2 – 1  (T2.1) 

Constraints 
x ≥ 0, κ ≥ 0, λ0 ≥ –1/κ,  λ1 ≥ 0, ν1 ≥ 0, 0 ≤ ν2 ≤ ν1(1 + 1/κ)  

For the existence of qth moment: ν2 ≤ ν1(1 + 1/κ) – q 

(T2. 2) 

Distribution 
function (a) 

F(x) = 
By(x)/[1 + y(x)](ν2/ν1٫ 1 + 1/κ – ν2/ν1) 

 B(ν2/ν1٫ 1 + 1/κ – ν2/ν1) , 

y(x) := ξ xν1,   ξ := κ λ1 / (1 + κ λ0) 

(T2.3) 

qth moment µq = ξ –q/ν1 
B[(ν2+q)/ν1٫ 1 + 1/κ – (ν2+q)/ν1]

B(ν2/ν1٫ 1 + 1/κ – ν2/ν1)   (T2.4) 

Entropy  
φ = (1 + 1/κ) [κ + ln(1 + κ λ0) + ψ(1/κ) – ψ(1 + 1/κ – ν2/ν1)] +
   
 [(ν2 – 1)/ν1] [ln ξ – ψ(ν2/ν1) + ψ(1 + 1/κ – ν2/ν1)] 

(T2.5) 

Determination of 
constant λ0 

 (1/ν1) (1 + κ λ0)
–1 – 1/κ 

ξ
 –ν2/ν1B(ν2/ν1٫ 1 + 1/κ – ν2/ν1) = 1 (T2.6) 

Determination of ξ  From (T2.4) for q = 1  
 

Relationship of 
shape parameters 

µ  
2

µ2
1
 = 

B[(ν2+2)/ν1٫ 1 + 1/κ – (ν2+2)/ν1] B(ν2/ν1٫ 1 + 1/κ – ν2/ν1)
B2[(ν2+1)/ν1٫ 1 + 1/κ – (ν2+1)/ν1]   (T2.7) 

Definition of 
B(θ, τ) and Bz(θ, τ) 

(b)  

B(θ, τ) := ⌡⌠
0

1

 t θ – 1 (1 – t)τ – 1 dt, Bz(θ, τ) := ⌡⌠
0

z

 t θ – 1 (1 – t)τ – 1 dt  (T2.8) 

Definition of ψ(θ) 
and Γ(θ) (c) 

ψ(θ) := Γ ΄(θ) / Γ(θ),     Γ(θ) := ⌡⌠
0

∞

 t θ – 1 e– t dt  (T2.9) 

Notes: (a) The random variable y(X) in (T2.3) follows the beta prime distribution (also known as beta of the 
second kind or inverted beta). (b) B(θ, τ) and Bz(θ, τ) are respectively the complete and incomplete beta function. 
(c) ψ(θ) and Γ(θ) are respectively the digamma and the gamma function . 
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Table A3. Equations of the special case PBP/L1 of the PBP distribution.  

Description Equation Refer-
ence 

Density function f(x) = exp(–λ0 – λ1 xν1) xν2 – 1  (T3.1)
Constraints x ≥ 0,  λ1 ≥ 0, ν1 ≥ 0, ν2 ≥ 0  (T3.2)

Distribution function (a) F(x) = 1 – 
Γy(x)(ν2/ν1)
Γ(ν2/ν1) ,    y(x) := λ1 xν1  (T3.3)

qth moment µq = λ1
–q/ν1 

Γ [(ν2+q)/ν1]
Γ(ν2/ν1)  (T3.4)

Entropy  φ = λ0 + ν2/ν1 + [(ν  – 1)/ν1] [ln λ1 – ψ(ν2/ν1)]  2
 (1/ν1) exp(–λ0)

 
λ1

–ν2/ν1 Γ(ν2/ν1) = 1 
(T3.5)

Determination of constant λ0 (T3.6)
Determination of λ1 From (T3.4) for q = 1   

Relationship of shape parameters 
µ  

2

µ2
1
 = 
Γ [(ν2+2)/ν1] Γ(ν2/ν1)

Γ2[(ν2+1)/ν1]  (T3.7)

Definition of Γz(θ) (b) Γz(θ) := ⌡⌠
z

∞

 t θ – 1 e– t dt (T3.8)

Notes: (a) The random variable y(X) in (T3.3) follows the gamma distribution. (b) Γz(θ) is the incomplete gamma 
function whereas Γ(θ) is the gamma function defined in equation (T2.9).  

Table A4. Equations of the special case PBP/L2 of the PBP distribution. 

Description Equation Refer-
ence 

Density function f(x) = 
xν2 – 1

1 + κ0 + κ1 xν1 (T4.1)

Constraints 
x ≥ 0, κ0 ≥ 0,  κ1 ≥ 0, ν1 ≥ 0, 0 ≤ ν2 ≤ ν1  

For the existence of qth moment: ν2 ≤ ν1 – q 
(T4.2)

Distribution 
function(a) F(x) = 

By(x)/[1 + y(x)](ν2/ν1٫ 1 – ν2/ν1) 
 B(ν2/ν1٫ 1 – ν2/ν1) ,  y(x) := ξ xν1, ξ := κ1 / (1 + κ0) (T4.3)

qth moment µq = ξ –q/ν1 sin(π ν2/ν1) / sin[π(ν2+q)/ν1] (T4.4)

Entropy  φ = –γ + ln(1 + κ0) – ψ(1 – ν2/ν1) +   
 [(ν2 – 1)/ν1] [ln ξ – ψ(ν2/ν1) + ψ(1 – ν2/ν1)] 

(T4.5)

Determination of 
constant κ0 

π ξ – ν2/ν1 / [(1 + κ0) ν1 sin(π ν2/ν1)] = 1 (T4.6)

Determination of ξ  From (T4.4) for q = 1 (T4.7)

Relationship of 
shape parameters 

µ  
2

µ2
1
 = 

sin2[π (ν2+1)/ν1]
sin[π(ν2+2)/ν1] sin(π ν2/ν1) (T4.8)

Notes: (a) The random variable y(X) follows the beta prime distribution; B(θ, τ) and Bz(θ, τ) are respectively the 
complete and incomplete beta function defined in equation (T2.8).  
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4. Additional information for the numerical investigation of variables with high 

variation – Extensive entropy approach 

To apply the PBP distribution assuming µ = 1 and some σ/µ > 1, it is observed that PBP has 

two free parameters; let them be κ and ν1. If these are fixed to some values, the other 

parameters λ1 and ν2 and the constant λ0 can be estimated from the equations (T2.7) and 

(T2.4) of Table A2 so that µ1 = µ and µ2 = µ2[(σ/µ)2 + 1]. Then, the extensive entropy can be 

calculated from equation (T2.5) of Table A2. An example of results of such calculations for 

σ/µ = 1.5 is given graphically in Figure 1 in the form of entropy contours of the PBP 

distribution with respect to the variation of parameters κ and ν1. It can be observed in this 

figure that (a) there is an infeasible area of values (κ, ν1) for which no solution exists; (b) on 

the boundary of the infeasible area, a single solution (λ1, ν2) exists; (c) in all other cases, two 

solutions (λ1, ν2) exist, which correspond to different values of entropy φ. The two sub-areas, 

in which the solution with the lower or the higher value of ν2 dominate, i.e. yield higher 

entropy, have been specified in Figure 1. Apart for entropy contours in the feasible area, the 

exponential-type (κ = 0) special cases Gamma, Weibull and PBP/L1, as well as the Pareto 

case have been marked in Figure 1. It is observed that the exponential-type cases yield low 

entropy, with the Gamma and the PBP/L1 being the cases with lowest and highest values of 

entropy among the three. The Pareto case yields entropy significantly higher than Gamma and 

Weibull. However, there are sub-areas in the feasible area yielding entropy even higher than 

that in the Pareto distribution. In general, for a specified κ, the maximum entropy appears at a 

point close to the boundary of the feasible area but not exactly on this boundary.  

 Similar behaviour was verified for other values σ/µ > 1. Graphical comparisons of the 

resulting Pareto and PBP/L2 distributions for µ = 1 and for values of σ/µ = 1 (whence both 

distributions identify with the exponential distribution), 1.25, 2 and 5 are shown in Figure 2. 

The distributions are given as double logarithmic plots of the random variate versus return 

period. The following may be observed from this figure for the curves corresponding to κ > 1: 

(a) The linearity of plots of both Pareto and PBP/L2 distributions for high return periods (e.g. 

T > 100) indicates a power-type behaviour. (b) The Pareto distribution differs from the 

exponential distribution in the entire domain, but the PBP/L2 distribution is indistinguishable 

from the exponential distribution for low return periods. This complies with the initial 

discussion that, according to the ME principle the exponential distribution is the limiting case 

for the extensive entropy concept, so to achieve maximum entropy for σ/µ > 1, the distribution 

must be very close to the exponential, except for very high return periods where a departure is  
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Figure 1. Entropy contours of the PBP distribution with µ = 1 and σ/µ = 1.5 with respect to the variation of 

parameters κ and ν1. 
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Figure 2. Graphical comparisons of Pareto and PBP/L2 distributions (shown as double logarithmic plots of 

the random variate versus return period) for µ = 1 and for several values of σ/µ > 1. For σ/µ = 1 both 

distributions identify with the exponential distribution.  

necessary to attain the required σ/µ. In addition, one must expect that there exist other 

distributions even closer to the exponential that would yield extensive standard entropy even 
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higher than that of PBP/L2, i.e. even closer to the upper bound 1. Here, it should be noted 

that, in fact, such a distribution would not be “observable”. For, if it were very close to the 

exponential distribution (except for very infrequent events with extremely large return 

period), then a typical sample of this distribution would yield an estimate of σ/µ very close to 

1 and not close to the theoretical σ/µ. 

5. Additional case studies 

In this section, some case studies additional to those described in the main paper are 

presented, whose details are listed in Table 5.  

Table 5.List of the case studies and respective data sets and their characteristics. 

Case # A1 A2 A3 A4 A5 
Process Rainfall Rainfall Rainfall Runoff Runoff 
Time scale Daily Monthly Monthly Daily Monthly 
Station Athens Aliartos Aliartos Boeoticos 

Kephisos 
Boeoticos 
Kephisos 

Data period 1927-1996 1907-2003 1907-2003 1978-2003 1907-2003
Period of year January January August Year January 
Record length(a) 
(years) 

70 (65) 96 96 25 (23) 96 

Number of data 
values(b) 

1998 (613) 96 96 (71) 8402 96 

Units mm mm mm mm mm 
Mean 5.05 94.2 17 0.38 0.45(d,e) 25.7 
Coefficient of 
variation 

1.39 0.56 1.67 1.29 1.19(e) 0.52 

Distribution 
maximizing 
entropy 

Pareto Truncated 
Normal 

Pareto Pareto Truncated 
Normal 

Maximized 
standard entropy 

1.291 0.784 1.401 1.16 0.727 

Notes: (a) In parentheses the equivalent years if missing data are not counted. (b) In parentheses the number of 
values without counting the zero values. (d) Mean minus threshold. (e) Value conditional on being greater than 
threshold.  

 In the main paper a case referring to the distribution of hourly rainfall in Athens, Greece, 

for the month of January (wettest month) is discussed. The distribution of the daily rainfall 

(nonzero depths) at the same station and month is depicted here in Figure 3. The coefficient of 

variation is 1.39 > 1 and the Pareto distribution is the closest to the empirical one. 

 Figure 4 depicts the distribution of monthly rainfall depth in Aliartos, Greece, for the 

month of January (wettest month). The empirical coefficient of variation is 0.56 < 1; thus the 

ME distribution is the truncated normal. Indeed, the figure shows that this distribution is the 
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closest to the empirical one. A similar plot is given in Figure 5 but for the month of August. 

August is the driest month and there are years with no rainfall in this month. As in the earlier 

cases, only nonzero rainfall depths were modelled. The coefficient of variation is 1.67 > 1 and 

thus the Pareto distribution is the ME distribution. Indeed, the figure shows that this is the 

closest to the empirical distribution.  

 In the main paper, the runoff of the Boeoticos Kephisos river was examined at the daily 

scale. Here, in addition, the monthly and annual scales are examined. Figure 6 and Figure 7 

depict the distribution of runoff at respectively the monthly (January) and annual scales. As in 

the case of rainfall, the ME distribution, which is the truncated normal, fits well the empirical 

one except for the tail of distribution. As a result, the Gamma distribution seems to give a 

better approximation of the tails in this case. However, it must be anticipated that a model 

based on ME principle on multiple time scales, as described in the annual rainfall case, could 

give a better representation of the distribution tails.  
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Figure 3. Plot of historical daily rainfall depth in Athens for the month of January versus return period, in 

comparison to several theoretical distributions. 
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Figure 4. Plot of historical monthly rainfall depth in Aliartos for the month of January versus return period, 

in comparison to several theoretical distributions.  
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Figure 5. Plot of historical monthly rainfall depth in Aliartos for the month of August versus return period, 

in comparison to several theoretical distributions.  
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Figure 6. Plot of historical monthly runoff in Boeoticos Kephisos for the month of January versus return 

period, in comparison to several theoretical distributions.  
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Figure 7. Plot of historical annual runoff in Boeoticos Kephisos versus return period, in comparison to 

several theoretical distributions.  
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