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Abstract The Gumbel distribution has been the prevailing model for quantifying risk 
associated with extreme rainfall. Several arguments including theoretical reasoning 
and empirical evidence are supposed to support the appropriateness of the Gumbel 
distribution. These arguments are examined thoroughly in this work and are put into 
question. Specifically, theoretical analyses show that the Gumbel distribution is quite 
unlikely to apply to hydrological extremes and its application may misjudge the risk, 
as it underestimates seriously the largest extreme rainfall amounts. Besides, it is 
shown that hydrological records of typical length (some decades) may display a 
distorted picture of the actual distribution, suggesting that the Gumbel distribution is 
an appropriate model for rainfall extremes while it is not. In addition, it is shown that 
the extreme value distribution of type II (EV2) is a more consistent alternative. Based 
on the theoretical analysis, in the second part of this study an extensive empirical 
investigation is performed using a collection of 169 of the longest available rainfall 
records worldwide, each having 100–154 years of data. This verifies the inappro-
priateness of the Gumbel distribution and the appropriateness of EV2 distribution for 
rainfall extremes. 
Key words design rainfall; extreme rainfall; generalized extreme value distribution;  
Gumbel distribution; hydrological design; hydrological extremes;  
probable maximum precipitation; risk  

Statistiques de valeurs extrêmes et estimation de précipitations 
extrêmes: I. Recherche théorique  
Résumé La distribution de Gumbel a longtemps été le modèle régnant pour la 
quantification du risque associé aux précipitations extrêmes. Plusieurs arguments 
comprenant à la fois un raisonnement théorique et des faits empiriques sont censés 
soutenir la pertinence de la distribution de Gumbel. Ces arguments sont examinés 
exhaustivement dans ce travail et sont mis en question. Spécifiquement, des analyses 
théoriques montrent que la distribution de Gumbel est peu susceptible de s’appliquer 
aux valeurs extrêmes de variables hydrologiques et que son application peut conduire 
à une mauvaise estimation du risque par une sérieuse sous-estimation des plus grandes 
valeurs extrêmes de précipitations. En outre, il est montré que les séries hydrologiques 
de longueur typique (quelques décennies) peuvent montrer une image déformée de la 
distribution réelle, ce qui suggère que la distribution de Gumbel est le modèle 
approprié pour les précipitations extrêmes alors qu’elle ne l’est pas. En outre, on 
montre que la distribution de valeurs extrêmes du type II (EV2) est une alternative 
plus cohérente. Dans la deuxième partie de cette étude, une recherche empirique 
étendue est effectuée, en se basant sur l’analyse théorique, avec une collection de 169 
séries de précipitations, parmi les plus longues de celles qui sont disponibles dans le 
monde entier, comportant chacune 100-154 ans de données. Ceci permet de vérifier la 
non-pertinence de la distribution de Gumbel et la pertinence de la distribution EV2 
pour les précipitations extrêmes.  
Mots clefs  pluie de projet; précipitation extrême; distribution généralisée de valeurs extrêmes; 
distribution de Gumbel; dimensionnement hydrologique; valeurs extrêmes en hydrologie; 
précipitation maximum probable; risque  
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INTRODUCTION 
 

Almost a century after the empirical foundation of hydrological frequency curves 
known as “duration curves” (Hazen, 1914) and the theoretical foundation of 
probabilities of extreme values (von Bortkiewicz, 1922; von Mises, 1923), and half a 
century after the convergence of empirical and theoretical approaches (Gumbel, 1958), 
the estimation of hydrological extremes continues to be highly uncertain. This has 
been vividly expressed by Klemeš (2000), who argues that:  

“... the increased mathematization of hydrological frequency analysis over the past 
50 years has not increased the validity of the estimates of frequencies of high 
extremes and thus has not improved our ability to assess the safety of structures 
whose design characteristics are based on them. The distribution models used 
now, though disguised in rigorous mathematical garb, are no more, and quite 
likely less, valid for estimating the probabilities of rare events than were the 
extensions ‘by eye’ of duration curves employed 50 years ago.” 

 Twenty years earlier, a similar critique was done be Willeke (1980; see also 
Dooge, 1986), who, among several common myths in hydrology, included the “Myth 
of the Tails”, which reads:  

“Statistical distributions applied to hydrometeorological events that fit through the 
range of observed data are applicable in the tails”,  

and emphasizes the fact that the tails of distributions fitted to real data are highly 
uncertain. 
 Obviously, however, the probabilistic approach to extreme values of hydrological 
processes signifies a major progress in hydrological science and engineering as it 
quantifies risk and disputes arbitrary and rather irrational concepts and approaches like 
the probable maximum precipitation (PMP) and flood (PMF). The latter, which 
essentially assume an upper limit to precipitation and river flow, have never been 
supported by concrete reasoning and data and have been criticized on both ethical 
grounds, for the promise that design values are risk free, and technical grounds for 
logical inconsistency and methodological gaps (Benson, 1973). For example, the 
hydrometeorological approaches to PMP are based on storm maximization assuming a 
high dew point, equal to the maximum observed values during a period of at least 50 
years (World Meteorological Organization, 1986, p. 11). Obviously, the maximum of a 
50-year period does not represent a physical limit and had this period been 100 or 200 
years the observed dew point would be higher. The statistical approach to PMP, based 
on the studies of Hershfield (1961, 1965) has been revisited recently (Koutsoyiannis, 
1999) and it was concluded that the data used by Hershfield do not suggest the 
existence of an upper limit. However, it must be recognized that the PMP/PMF 
concepts are still in wide use and are regarded by many as concepts more physically 
based than the probabilistic approach. 
 If one is exempted from the concept of an upper limit to a hydrological quantity 
and adopts a probabilistic approach, one will accept that the quantity may grow 
without any upper limit, but the probability of exceedence decreases as the quantity 
grows. In this case, as probability of exceedence tends to zero, there exists a lower 
limit to the rate of growth which is proven mathematically. This lower limit is repre-
sented by the Gumbel distribution, which has the thinnest possible tail. So, abandoning 
the PMP concept and adopting the Gumbel distribution can be thought of as a step 
from a finite upper limit to infinity, but with the slowest possible growth rate towards 
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infinity. Does nature follow the slowest path to infinity? This question is not a philo-
sophical one but has strong engineering implications. If the answer is positive, the 
design values for flood protection structures or measures will be the smallest possible 
ones (among those obtained by the probabilistic approach), otherwise they will be 
higher. 
 The fact that the Gumbel distribution has been the most common probabilistic 
model used in modelling hydrological extremes, especially rainfall extremes, may be 
interpreted as a positive answer to the above question. It is well known that the estima-
tion of rainfall extremes is very important for major hydraulic structures, given that 
design floods are generally estimated from appropriately synthesized design storms 
(e.g. US Department of the Interior, Bureau of Reclamation, 1977, 1987; Sutcliffe, 
1978). Recently, several studies have shown that floods seem to have heavier tails than 
a Gumbel distribution (Farquharson et al., 1992; Turcotte, 1994; Turcotte & Malamud, 
2003). Other studies (Wilks, 1993; Koutsoyiannis & Baloutsos, 2000; Coles et al. 
2003; Coles & Pericchi, 2003; Sisson et al., 2003) have extended the scepticism for the 
Gumbel distribution to the case of rainfall extremes, showing that it underestimates 
seriously the largest extreme rainfall amounts.  
 This scepticism about the Gumbel distribution for hydrological extremes, with 
emphasis on rainfall extremes, is the central theme of this study. After a brief review of 
basic concepts of extreme value distributions, theoretical arguments are provided 
which show that the Gumbel distribution is quite unlikely to apply to hydrological 
extremes. Besides, it is shown that hydrological records of inadequate length may 
display a distorted picture of the actual distribution, suggesting that the Gumbel 
distribution is an appropriate model for rainfall extremes while it is not. Apparently, as 
record length grows, the picture drawn by hydrological records becomes clearer. 
Therefore, a collection of 169 of the longest available rainfall records worldwide, each 
having 100–154 years of data, was formed. Based on the theoretical analysis, in the 
second part of this study (Koutsoyiannis, 2004), an extensive empirical investigation is 
performed. This verifies the fact that the Gumbel distribution is inappropriate for 
rainfall extremes and suggests that the three-parameter extreme value distribution of 
type II is a choice closer to reality and easy to use even with short rainfall records.  
 
 
BASIC CONCEPTS OF EXTREME VALUE DISTRIBUTIONS  
 
It is recalled from probability theory that, given a number n of independent identically 
distributed random variables, the largest (in the sense of a specific realization) of them 
(more precisely, the largest order statistic), i.e.:  

X := max {Y1, Y2, …, Yn} (1) 

has probability distribution function:  

Hn(x) = [F(x)]n  (2) 

where F(x) := P{Yi ≤ x} is the common probability distribution function (referred to as 
the parent distribution) of each Yi. If n is not constant, but rather can be regarded as a 
realization of a Poisson distributed random variable with mean ν, then the distribution 
of X becomes (e.g. Todorovic & Zelenhasic, 1970; Rossi et al., 1984): 

H ν́(x) = exp{–ν[1 – F(x)]} (3) 



Demetris Koutsoyiannis 578 
 
 

Since ln[F(x)]n = nln{1 – [1 – F(x)]} = n{–[1 – F(x)] – [1 – F(x)]2 – …} ≈ –n[1 – F(x)], 
it turns out that for large n or large F(x), Hn(x) ≈ H΄n(x). Numerical investigation shows 
that even for relatively small n, the difference between Hn(x) and H ń(x) is not 
significant (e.g. for n = 10, the relative error in estimating the exceedence probability  
1 – Hn(x) from equation (3) rather than from equation (2) is about 3% at most; for  
F(x) = 0.95, even for n = 1, the error does not exceed 2.5%).  
 In hydrological applications concerning the distribution of annual maximum 
rainfall or flood, it may be assumed that the number of values of Yi (e.g. the number of 
storms or floods per year), whose maximum is the variable of interest X (e.g. the 
maximum rainfall depth or flood discharge), is not constant. The Poisson model can be 
regarded as appropriate for such applications. Given also the small difference between 
equations (3) and (2), it can be concluded that equation (3) should be regarded as an 
appropriate model for every practical hydrological application. 
 However, the exact distributions (2) or (3), whose evaluation requires the parent 
distribution to be known, have not been used in hydrological statistics. Instead, hydro-
logical applications have made wide use of asymptotes or limiting extreme value 
distributions, which are obtained from the exact distributions when n tends to infinity. 
Gumbel (1958), following the pioneering works by Fréchet (1927), Fisher & Tippet 
(1928) and Gnedenko (1941), developed a comprehensive theory of extreme value 
distributions. According to this, as n tends to infinity, Hn(x) converges to one of three 
possible asymptotes, depending on the mathematical form of F(x) (Gumbel, 1958, 
p. 157). The same limiting distributions may also result from H ν́(x) as ν tends to 
infinity. All three asymptotes can be described by a single mathematical expression 
introduced by Jenkinson (1955, 1969) and become known as the Generalized Extreme 
Value (GEV) distribution. This expression is:  

H(x) = exp
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

–⎣⎢
⎡

⎦⎥
⎤1 + κ⎝⎜

⎛
⎠⎟
⎞x

λ – ψ
–1/κ

 κx ≥ κλ(ψ – 1/κ)  (4) 

where ψ, λ > 0 and κ are location, scale and shape parameters, respectively. Leadbetter 
(1974) showed that this holds not only for maxima of independent random variables 
but for dependent random variables, as well, provided that there is no long-range 
dependence of high-level exceedences. It is noted that the sign convention of κ in 
equation (4) is opposite to that most commonly used in hydrological texts and the 
location parameter is dimensionless, whereas in most texts a dimensional parameter  
ξ = λψ is used. 
 When κ > 0, H(x) represents the extreme value distribution of maxima of type II 
(EV2). In this case the variable is bounded from below and unbounded from above  
(λψ – λ/κ ≤ x < +∞). A special case is obtained when the lower bound becomes zero  
(ψ = 1/κ). This special two-parameter distribution has the simplified form: 

Η(x) = exp
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

–⎝⎜
⎛

⎠⎟
⎞λ

κx
1/κ

 x ≥ 0  (5) 

In some texts, equation (5) is referred to as the EV2 distribution. Here, as in Gumbel 
(1958), the name EV2 distribution is used for the complete three-parameter form 
(equation (4)) with κ > 0. Distribution (5) is referred to as the Fréchet distribution. 
 The limiting case κ = 0 represents the type I distribution of maxima (EV1 or 
Gumbel distribution). Using simple calculus it is found that, in this case, equation (4) 
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takes the form: 

H(x) = exp[–exp (–x/λ + ψ)]   (6) 

which is unbounded from both below and above (–∞ < x < +∞). 
 When κ < 0, H(x) represents the type III (EV3) distribution of maxima. However, 
this should be of no practical interest in hydrology as it refers to random variables 
bounded from above (–∞ < x ≤ λψ – λ/κ). As discussed in the introduction, there is no 
general consensus on this and many regard an upper bound in natural quantities as 
reasonable. Even Jenkinson (1955) regards the EV3 distribution as “the most 
frequently found in nature, since it is reasonable to expect the maximum values to have 
an upper bound”. However, he leaves out rainfall from this conjecture saying “to a 
considerable extent rainfall amounts are ‘uncontrolled’ and high falls may be 
recorded”. In fact, he proposes the EV2 distribution for rainfall (note that he uses a 
different convention, referring to EV2 as type I). In a recent study, Sisson et al. (2003), 
even though detecting EV2 behaviour of rainfall maxima, attempt to incorporate the 
idea of a PMP upper bound within an EV2 modelling framework.  
 Furthermore, it is noted that if the distribution of minima is of interest, the roles of 
types II and III reverse, e.g. the type III distribution is not bounded from above and 
thus it is a reasonable model for the study of droughts. 
 The close relationship between the distribution of maxima H(x) and the tail of the 
parent distribution F(x) allows for the determination of the latter if the former is 
known. The tail of F(x) can be represented by the distribution of x conditional on being 
greater than a certain threshold ξ, i.e. Gξ(x) := F(x|x > ξ), for which:  

1 – Gξ(x) = 
1 – F(x)
1 – F(ξ)  x ≥ ξ  (7) 

If one chooses ξ so that the exceedence probability 1 – F(ξ) equals 1/ν, the reciprocal 
of the mean number of events in a year (this is implied when the partial duration series 
is formed from a time series of measurements, by choosing a number of events equal 
to the number of years of record), and denote G(x) the conditional distribution for this 
specific value, then:  

1 – G(x) = ν[1 – F(x)] (8) 

Combining equation (8) with equation (3) it is obtained that: 

G(x) = 1 + ln H ν́(x) (9) 

 If H ν́(x) is given by the limit distribution H(x) in equation (4), then it is concluded 
that for κ > 0:  

G(x) = 1 – ⎣⎢
⎡

⎦⎥
⎤1 + κ⎝⎜

⎛
⎠⎟
⎞x

λ – ψ
–1/κ

 x ≥ λψ (10) 

which is the Pareto distribution. Similarly, for κ = 0:  

G(x) = 1 – exp(–x/λ + ψ) x ≥ λψ  (11) 

which is the exponential distribution. For the special case ψ = 1/κ: 

G(x) = 1 – ⎝⎜
⎛

⎠⎟
⎞λ

κx
1/κ

 x ≥ λ/κ  (12) 
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which is a power law relationship between the distribution quantile x and the return 
period T := 1 / [1 – G(x)], the mean time interval between exceedences of x, expressed 
in years. Specifically, equation (12) can be written as x = (λ/κ)Tκ. Turcotte (1994) used 
this special power law (also calling it a fractal law) to model flood peaks over 
threshold in 1200 stations in the United States. In the generalized Pareto case (equation 
(10)), the corresponding relationship is x = (λ/κ)(Tκ – 1 + κψ).  
 
 
THE PREVAILING OF THE GUMBEL DISTRIBUTION 
 
Due to their simplicity and generality, the limiting extreme value distributions H(x) 
have become very widespread in hydrology. The exact distributions Hn(x) and H ν́(x) 
(equations (2) and (3)) are used rarely in studies of hydrological extremes, as their 
determination requires the parent distribution F(x) to be known. The determination of 
F(x) may be too complex and is not necessary as its truncated version G(x) is sufficient 
for the study of extremes. 
 In particular, as mentioned in the introduction, the EV1 extreme value distribution 
has been by far the most popular model of extremes. In hydrological education it is so 
prevalent that most textbooks contain the EV1 distribution only, omitting EV2. In 
hydrological engineering studies, especially those analysing rainfall maxima, the use 
of EV1 has become so common that its adoption is almost automatic, without any 
reasoning or comparison with other possible models. There are several reasons for this: 
(a) Theoretical reasons Most types of parent distribution functions that are used in 

hydrology, such as exponential, gamma, Weibull, normal and lognormal (e.g. 
Kottegoda & Rosso, 1997, p. 431), belong to the domain of attraction of the 
Gumbel distribution. In contrast, the domain of attraction of the EV2 distribution 
includes less frequently used parent distributions like Pareto, Cauchy and log-
gamma.  

(b) Simplicity The mathematical handling of the two-parameter EV1 is much simpler 
than that of the three-parameter EV2 (see also point (d) below).  

(c) Accuracy of estimated parameters Obviously, two parameters are more accurately 
estimated than three. For the former case, mean and standard deviation (or second 
L-moment) suffice, whereas in the latter case the skewness is also required and its 
estimation is extremely uncertain for typical small-size hydrological samples.  

(d) Practical reasons Probability plots are the most common tools used by 
practitioners, engineers and hydrologists, to choose an appropriate distribution 
function. EV1 offers a linear probability plot, known as Gumbel probability plot, 
which is a diagram of xH versus the so called Gumbel reduced variate, defined as 
zH := –ln(–lnH). The observed zH is estimated in terms of plotting positions, i.e. 
sample estimates of probability of non-exceedence. In contrast, a generalized 
linear probability plot for the three-parameter EV2 is not possible to construct 
(unless one of the parameters is fixed). In fact, if κ > 0, the plot of xH versus zH is a 
convex curve. This may be regarded as a primary reason of choosing EV1 against 
EV2 in practice. For the Fréchet distribution, a linear plot is possible (a plot of 
lnxH versus zH that will be referred to as the Fréchet probability plot). However, 
empirical evidence shows that, in most cases, plots of xH versus zH give more 
straight-line arrangements than plots of lnxH versus zH. An additional practical 
reason is the fact that many institutions suggest, or even require, the use of EV1.  
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 As mentioned in the introduction, EV1 has one potential disadvantage, which is 
very important from the engineering point of view: for small probabilities of exceed-
ence (or large return periods) it yields the smallest possible quantiles xH in comparison 
to those of EV2 for any (positive) value of the shape parameter κ. This means that EV1 
results in the highest possible risk for engineering structures. Normally, this would be 
a sufficient reason to avoid the use of EV1 in engineering studies.  
 Obviously, this disadvantage of EV1 would be counterbalanced only by strong 
empirical evidence and theoretical reasoning. In practice, the small size of common 
hydrological records (e.g. a few tens of years) cannot provide sufficient empirical 
evidence for preferring EV1 over EV2. This is discussed in the section “The hiding of 
the EV2 distribution” based on a simulation study and in part II of the study 
(Koutsoyiannis, 2004) based on the real-world collection of long records. In addition, 
the theoretical reasons, exhibited in point (a) above, are not strong enough to justify 
the automatic adoption of the Gumbel distribution. This is discussed in the following 
section.  
 
 
THEORETICAL STUDY OF THE APPROPRIATENESS OF THE GUMBEL 
DISTRIBUTION 
 
To begin the theoretical discussion, it will be assumed that the events, whose 
maximum values are studied, can be represented as independent identically distributed 
random variables Yi (Assumption 1). Further, it will be assumed that the (unknown) 
parent distribution F(y) belongs, with absolute certainty, to the domain of attraction of 
EV1 (Assumption 2). Are these rather oversimplifying and implausible assumptions 
sufficient to justify the adoption of EV1? The answer is clearly “No”. This answer is 
demonstrated in Fig. 1, which depicts Gumbel probability plots of the exact 
distribution functions of maxima Hn(x) for n = 103 and 106 for two parent distribution 
functions. The first (left panel) is the standard normal distribution and the second (right 
panel) is the Weibull distribution (F(y) = 1 – exp(–yk)) with shape parameter k = 0.5. 
Both parent distributions belong to the domain of attraction of the EV1 limiting 
distribution, so it is expected that the Gumbel probability plot tends to a straight line as 
n → ∞. However, the tendency is remarkably slow, and even for n as high as 106 the 
curvature of the distribution functions is apparent. Obviously, in hydrological 
applications, such a high number of events within a year is not possible (it can be 
expected that the number of storms or floods in a location will not exceed the order of 
10–102). Thus, the limiting distribution for n → ∞ is not useful at all. 
 When studying storms and floods at a fine time scale, the parent distribution has 
typically a positively skewed, J-shaped density function. Thus, the normal distribution 
is not relevant in this case, but the Weibull distribution with shape parameter smaller 
than 1 (e.g. k = 0.5 as in the example of Fig. 1) can be a plausible parent distribution. 
In this case, it is observed in Fig. 1, that the probability plots are convex curves, which 
indicates that, for a specified n, an EV2 distribution may approximate sufficiently the 
exact distribution. Thus, even if the parent distribution belongs to the domain of 
attraction of the Gumbel distribution, an EV2 distribution can be a choice closer to the 
exact distribution of maxima in comparison to EV1. 
 Now, the Assumption 1 set above will be relaxed, forming the more plausible 
Assumption 1A. According to this, the events whose maximum values are studied are  
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Fig. 1 Gumbel probability plots of the exact distribution function of maxima Hn(x) for 
n = 103 and 106, also in comparison with the parent distribution function F(y) ≡ H1(y), 
which in the left panel is standard normal and in the right panel Weibull with shape 
parameter k = 0.5. The distribution quantile has been standardized by x0.9999 corres-
ponding to zH = 9.21.  

 
 
independent random variables Yi, but not identically distributed ones. Instead, it is 
assumed that all Yi have the same type of distribution function Fi(y), but with different 
parameters. This distribution function belongs to the domain of attraction of the 
Gumbel distribution, i.e. Assumption 2 is valid for each Fi(y).  
 The relaxed Assumption 1A is more consistent with hydrological reality. The 
statistical characteristics (e.g. averages, standard deviations, etc.) and, consequently, 
the parameters of distribution functions exhibit temporal (e.g. seasonal) variation. In 
addition, evidence from long geophysical records shows that there appear fluctuations 
of local statistical properties on large time scales (e.g. tens of years, hundreds of years, 
etc.). It has been proposed that such fluctuations, either periodical or irregular, 
occurring either on a single time scale or on multiple time scales simultaneously, 
constitute the physical basis of the well-known Hurst phenomenon (Klemeš, 1974; 
Montanari et al., 1999; Koutsoyiannis, 2002). Here it should be noted that such 
fluctuations may not be detected in series of maxima, which typically satisfy 
Leadbetter’s (1974) condition of the absence of long-range dependence, but surely 
affect the parent distribution of rainfall at low- and intermediate-level exceedences. 
 The consequences of Assumption 1A are demonstrated by examples in which the 
parent distribution is specified to be the gamma distribution (which belongs to the 
domain of attraction of EV1) with varying scale parameter. (Additionally, the shape 
parameter could be regarded as a varying one, but the study of the effect of the varia-
tion of the scale parameter is mathematically more convenient and sufficient for the 
demonstration attempted.) More specifically, it may be assumed that during some 
“epoch” (e.g. a specific month of a year through one or more years) the scale para-
meter is fixed to some value αi > 0. In this case, the probability density function of Yi, 
conditional on αi, is: 

fi(y|αi) = αi
θ y

θ–1
e

–αi
 y
/Γ(θ) (13) 

where the shape parameter θ > 0 was kept constant for all “epochs”. In the first 



Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation 583
 
 

example it will be assumed that αi varies randomly following a gamma distribution 
itself with scale parameter β > 0 and shape parameter τ > 0, so that its density is: 

g(αi) = β
τ
αi
τ–1

e
–βαi/Γ(τ) (14) 

 If one is interested in the unconditional distribution of the variable Y that is valid 
over all epochs instead of a specified epoch, then one should use equations (13) and 
(14) to determine the marginal density of Y, which is: 

f(y) = ⌡⌠
0

∞
fi(y|αi) g(αi) dαi = {β

τ
y
θ–1

/[Γ(θ)Γ(τ)]} ⌡⌠
0

∞
αi
θ+τ–1 e

–(y+β)αi
 
dαi (15) 

After algebraic manipulations it is obtained that:  

f(y) = 
1

βΒ(θ,τ) 
(y/β)

θ–1

 (1 + y/β)
τ+θ  (16) 

which shows that the marginal distribution of Y/β is beta of the second kind (Kendall 
& Stuart, 1963, p. 151; Yevjevich, 1972, p. 149). Consequently, the marginal 
probability distribution function of Y is:  

F(y) = By/(y+β)(θ,τ)/B(θ,τ)  (17) 

where Bz(θ,τ) and B(θ,τ) denote respectively the incomplete beta function and the Euler 
(complete) beta function, i.e.:  

Bz(θ,τ) := ⌡⌠
0

z
tθ–1(1 – t)τ–1dt B(θ,τ) := ⌡⌠

0

∞
tθ–1(1 – t)τ–1dt (18) 

Thus, the exact distribution of maxima for constant and variable n is respectively: 

Hn(x) = [Bx/(x+β)(θ,τ)/B(θ,τ)]n H ν́(x) = exp{–ν[1 – Bx/(x+β)(θ,τ)/B(θ,τ)]}  (19) 

For θ = 1, the parent distribution (equation (17)) simplifies to: 

F(y) = 1 – (1 + y/β)–τ  (20) 

which is the Pareto distribution. Clearly, this belongs to the domain of attraction of 
EV2 with zero lower bound, i.e. the limiting distribution of maxima H(x) is the Fréchet 
distribution. In the general case, it can be shown that:  

 
lim

y → ∞
 

y f(y)
1 – F(y) = τ > 0  (21) 

which is a sufficient condition for convergence of Hn(x) to the EV2 distribution (e.g. 
Kottegoda & Rosso, 1997, p. 430). 
 In Fig. 2 it is demonstrated how the exact distribution tends to the Fréchet distribu-
tion as n increases. In this case the shape parameter θ was assumed 0.5 and the exact 
distribution was calculated from equation (19). For n as high as 1000, the Fréchet 
probability plot becomes almost a straight line. However, as in the cases of Fig. 1, for 
smaller values of n, which are more relevant in hydrological applications, the Fréchet 
plot of the exact distribution appears to be curved, so a three-parameter EV2 distribu-
tion would yield a better approximation to the exact distribution than the Fréchet  
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Fig. 2 Fréchet probability plot of the exact distribution function of maxima Hn(x) for  
n = 1, 10 and 1000, as this results, assuming a gamma parent distribution, with shape 
parameter θ = 0.5 and scale parameter randomly varying following a second gamma 
distribution with shape parameter τ = 3 and scale parameter β = 1. The distribution 
quantile has been standardized by x0.9999 corresponding to zH = 9.21.  

 
 
distribution. (It is noted that the concave curvature appearing in the Fréchet plot of 
Fig. 2 would be convex in a Gumbel plot.)  
 A more specific numerical experiment is depicted in Fig. 3. Here the exact distribu-
tions of maxima H5(x) (for n = 5), based on assumptions 1 and 1A, are compared. In case 
1A, a variable parameter gamma distribution was assumed, with parameters θ = 0.5,  
τ = 5 and β = 1. In case 1, the variable scale parameter is replaced by a constant 
parameter α = τ/β = 5 (equal to the mean of the scale parameter of case 1A). The exact 
distribution of maxima for case 1 is almost a straight line on the Gumbel probability plot, 
whereas that of case 1A is a convex curve. In addition to the theoretical distribution 
functions, empirical ones were also plotted, based on 4000 synthetic maxima. To these 
synthetic data series the EV1 and EV2 distributions were fitted and were also plotted in 
Fig. 3. As expected, EV1 is in good agreement with the exact distribution of case 1, but 
departs significantly from the exact distribution in case 1A, especially in the tail that 
corresponds to large return periods. In contrast, the EV2 distribution (estimated κ = 0.20) 
is almost indistinguishable from the exact distribution. 
 A second, simpler example was based again on gamma parent distribution function 
with constant shape parameter θ = 0.5 and scale parameter shifting between two values, 
α1 = 2 and α2 = 6 which are sampled at random with probabilities 0.25 and 0.75, 
respectively. The two values of the scale parameter could be thought of as representing 
two epochs, a wet and a dry or even two distinct competing processes as in Walshaw 
(2000). For comparison, a gamma distribution with constant parameter α = 5 (again 
equal to the mean of α1 and α2) was used. Here, the theoretical distributions were not 
determined but rather empirical ones were plotted, based on 4000 synthetic maxima. 
To these synthetic data series, the EV1 and EV2 distributions were fitted and were also 
plotted in Fig. 4. As in Fig. 3, EV1 is in good agreement with the empirical distribution 
of the constant parameter case but departs significantly from the empirical distribution 
of the variable parameter case. Again, the departure is greatest in the tail, i.e. in large 
return periods. In contrast, EV2 (with κ = 0.20) agrees well with the simulated 
distribution. 
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Fig. 3 Gumbel probability plot of the exact distribution function of maxima H5(x), as 
this results assuming a gamma parent distribution with shape parameter θ = 0.5 and 
scale parameter either constant α = 5 (case 1) or randomly varying following a second 
gamma distribution with shape parameter τ = 5 and scale parameter β = 1 (case 1A). 
The additional plotted curves are empirical distribution functions from synthesized 
series of length 4000, and fitted to these series EV1 and EV2 distribution functions.  
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Fig. 4 Gumbel probability plot of the empirical distribution functions of maxima H5(x) 
and fitted EV1 and EV2 distribution functions, as they result from synthesized series 
of length 4000 assuming gamma parent distribution with shape parameter θ = 0.5 and 
scale parameter either constant α = 5, or shifting at random between the values α1 = 2 
and α2 = 6 with probabilities 0.25 and 0.75, respectively.  

 
 
 All this theoretical discussion and the examples show that the theoretical reasons, 
which have endorsed the use of the Gumbel distribution for hydrological extremes, are 
not strong enough to compensate the high risk it implies.  
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THE HIDING OF THE EV2 DISTRIBUTION  
 
If, according to the previous analysis, an EV2 distribution is more likely to represent 
hydrological maxima than an EV1 distribution, the question arises, why was this not 
manifested in maximum rainfall series, which are typically attributed an EV1 
behaviour? The answer to this question is simple: typical annual maximum rainfall 
series extend over 20–50 years and such a record length hides the EV2 distribution and 
displays an EV1 behaviour.  
 This was demonstrated by Koutsoyiannis & Baloutsos (2000) using an annual 
series of maximum daily rainfall in Athens, Greece, extending through 1860–1995 
(136 years). This series was found to follow the EV2 distribution, but if small parts of 
the series were analysed, the EV1 distribution seemed to be an appropriate model. 
 Here a more systematic analysis has been done based on Monte Carlo simulations 
for different sample sizes m and different shape parameters κ. For each combination of 
m and κ, 200 synthetic records were generated from the EV2 distribution. For each 
synthetic record, the parameter κ was assumed unknown and was estimated from the 
record, using the methods of moments and L-moments. From the simulation results, a 
negative bias, defined as estimated κ minus true κ, became apparent, and its expected 
magnitude b was computed as the average of the 200 samples. As expected, b is found 
to be a function of both m and κ, which can be approximated by the following 
expressions (chosen after several trials and fitted numerically to simulation results): 

b = –1.7κ3 – 
55κ + 2

m + 200κ + 20  b = – 
0.44e4κ

m  (22) 

for the moments and L-moments estimators, respectively. The expressions are plotted 
in Fig. 5. It can be observed that for κ = 0.15 (a value that is typical for extreme 
rainfall, as will be shown in part II of the study—Koutsoyiannis, 2004) and for a 
record length of 20 years the bias is –0.15, which means that the estimated κ will be 
zero! Even for a record length of 50 years the negative bias is high (b = –0.12), so that 
κ will be estimated at 0.03, a value that will not give good reason for preferring EV2 to 
EV1.  
 The situation is improved if L-moments estimators are used as the resulting bias is 
much lower (Fig. 5). However the method of L-moments is relatively new (Hosking et 
al., 1985; Hosking, 1990) and its use has not been very common so far. In addition, 
even the method of L-moments will not reject the hypothesis of an EV1 distribution 
against the hypothesis of EV2 distribution thus making a type II error (no rejection of a 
false hypothesis) with a high probability. To demonstrate this, the L-moments κ test 
(Hosking et al., 1985; see also Stedinger et al., 1993) was used, which tests whether  
κ = 0 (i.e. appropriateness of the EV1 distribution; null hypothesis) or not (alternative 
hypothesis). To determine the probability of type II error using this test, a simulation 
experiment was performed similar to the one already described, assuming that the true 
distribution is EV2 with several values of κ. With this assumption, for each combina-
tion of κ and m, 10000 synthetic records were generated and for each record the κ-test 
was applied with null hypothesis κ = 0, alternative hypothesis κ > 0 and significance 
level 5%. The results of simulations have been plotted in Fig. 6. It can be observed that 
for κ = 0.15 and m = 20 the frequency of not rejecting the EV1 distribution is 80%! 
Even for m = 50 this frequency is high: 62%.  
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Fig. 5 Bias in estimating the shape parameter κ of the GEV distribution using the 
methods of moments and L-moments.  
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Fig. 6 Probability of type II error (no rejection of a false hypothesis) in testing the null 
hypothesis that a series originates from the EV1 distribution against the hypothesis 
that it originates from the EV2 distribution.  

 
 
 For the method of maximum likelihood, a single simulation experiment was 
performed corresponding to κ = 0.15 and m = 30. The bias was found to be about half 
that of the method of L-moments, i.e. not very substantial. However, its sample 
variance was equally high as in the other methods, which indicates that the uncertainty 
in estimating the shape parameter is high even using the more accurate method of 
maximum likelihood. It is noted that the latter method is not widely used in 
engineering applications, as, in contrast to the other two methods which are simple, it 
requires numerical optimization (no analytical solution can be obtained). Con-
sequently, a more detailed demonstration of the behaviour of this method is not 
relevant to this investigation, whose purpose is to demonstrate whether common 
engineering practices hide or display an underlying EV2 behaviour of a series of 
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maxima. The reader interested in additional information on the application of the 
maximum likelihood method to study rainfall extremes, including testing the 
hypothesis of EV1 vs EV2, as well as in Bayesian analysis in fitting EV2 to rainfall 
extremes, is referred to Coles & Pericchi (2003). 
 The findings of this investigation show that the empirical evidence supporting the 
wide applicability of the Gumbel distribution may, in fact, be the result of too small 
sample sizes and imperfections of parameter fitting methods, rather than a manifesta-
tion of the real behaviour of rainfall maxima. To improve the clarity of the real 
behaviour of extreme rainfall series longer records are needed. Such records are 
investigated in the second part of the study (Koutsoyiannis, 2004).  
 
 
SYNOPSIS AND CONCLUSION  
 
The Gumbel or EV1 distribution has been the prevailing model for rainfall extremes 
despite the fact that it results in the highest possible risk for engineering structures, i.e. 
it yields the smallest possible design rainfall values in comparison to those of EV2 for 
any value of the shape parameter. The simplicity of the calculations of the EV1 
distribution, along with its geometrical elucidation through a linear probability plot, 
may have contributed to its popularity with hydrologists and engineers. There is also a 
theoretical justification, as EV1 is the asymptotic extreme value distribution for a wide 
range of parent distributions that are common in hydrology.  
 However, the theoretical investigation of this study shows that the convergence of 
the exact distribution of maxima to the asymptote may be extremely slow, thus making 
the EV1 asymptotic distribution an inappropriate approximation of the exact 
distribution of maxima. Besides, the attraction of parent distributions to the EV1 
asymptote relies on a stationarity assumption, i.e. that parameters of the parent 
distribution are constant in time, which may not be the case in hydrological processes. 
Slight relaxation of this assumption may result in the EV2 rather than the EV1 
asymptote.  
 In contrast, the EV2 distribution does not have the theoretical disadvantages of the 
EV1 distribution. Even though it is still a limiting distribution, it can yield good 
approximations to the exact distribution of the maximum of a number of variables, 
even if this number is small, and it is not very sensitive to changes of parameters in 
time.  
 The simulation experiments of the study show that small sizes of records, e.g. 20–
50 years, hide the EV2 distribution and display it as if it were EV1. This allows the 
conjecture that the broad use of the EV1 distribution worldwide may in fact be related 
to small sample sizes rather than to the real behaviour of rainfall maxima, which 
should be better described by the EV2 distribution. This conjecture is investigated in 
the second part of the study using 169 of the longest available rainfall records 
worldwide.  
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