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Abstract 

Several of the existing rainfall models involve diverse assumptions, a variety of uncertain 

parameters, complicated mechanistic structures, use of different model schemes for different 

time scales, and possibly classifications of rainfall patterns into different types. However, the 

parsimony of a model is recognized as an important desideratum as it improves its 

comprehensiveness, its applicability and possibly its predictive capacity. To investigate the 

question if a single and simple stochastic model can generate a plethora of temporal rainfall 

patterns, as well as to detect the major characteristics of such a model (if it exists), a data set 

with very fine timescale rainfall is used. This is the well-known data set of the University of 

Iowa comprising measurements of seven storm events at a temporal resolution of 5-10 

seconds. Even though only seven such events have been observed, their diversity can help 

investigate these issues. An evident characteristic resulting from the stochastic analysis of the 

events is the scaling behaviours both in state and in time. Utilizing these behaviours, a 

stochastic model is constructed which can represent all rainfall events and all rich patterns, 

thus suggesting a positive reply to the above question. In addition, it seems that the most 

important characteristics of such a model are a power-type distribution tail and an asymptotic 

power-type autocorrelation function. Both power-type distribution tails and autocorrelation 

functions can be viewed as properties enhancing randomness and uncertainty, or entropy. 

Keywords: long-term persistence, power-type tails, rainfall modelling 



1. Introduction and motivation 

Rainfall has been traditionally regarded as a random process with several peculiarities, mostly 

related to intermittency and non Gaussian behaviour. However, many have been not satisfied 

with the idea of a pure probabilistic or stochastic description of rainfall and favoured a 

deterministic modelling option. For example, Eagleson (1970 p. 184) states “The spacing and 

sizing of individual events in the sequence is probabilistic, while the internal structure of a 

given storm may be largely deterministic”. Such a perception of rainfall is also reflected in 

common engineering practices, such as the construction of design storms, in which the total 

depth may be determined by probabilistic considerations but the arrangement of rainfall depth 

increments follows a deterministic procedure, e.g. a pre-specified dimensionless hyetograph.  

 More recently, developments of nonlinear dynamical systems and chaos allowed many 

to apply algorithms from these disciplines in rainfall and claim for having discovered low 

dimensional deterministic dynamics in rainfall (see e.g., Sivakumar, 2000; Puente and 

Sivakumar, 2007). However, such results have been disputed by others (e.g., Schertzer et al., 

2002; Koutsoyiannis, 2006a). In the latter study, among other data sets, a high temporal 

resolution data record was used, in which the application of chaos detection algorithms did 

not give any indication of low dimensional chaos.  

 This high resolution record is one of seven storms that were measured by the 

Hydrometeorology Laboratory at the University of Iowa using devices that are capable of 

high sampling rates, once every 5 or 10 seconds (Georgakakos et al., 1994). This unique data 

set allows inspection of the rainfall process at very fine time scales and was the subject of 

several extensive analyses including multifractal analysis and multiplicative cascades 

(Cârsteanu and Foufoula-Georgiou, 1996) and wavelet analysis (Kumar and Foufoula-

Georgiou, 1997). However, apart from such more technical analyses, this unique data set 

offers a basis for simpler yet more fundamental investigations that could provide insights for 

the characterization and mathematical modelling of the rainfall process; this will be attempted 

in the next sections. In this respect, the Iowa data set allows revisiting and acquiring better 

insight on the questions whether a single model can or cannot generate different types of 



events with enormous differences among them and, if yes, how such a model would look like. 

First, will it be deterministic or stochastic? A deterministic perception of the rainfall process 

may seem in accord to the high temporal dependence (autocorrelation) of the rainfall process 

at small lag times. However, this may indicate a misconception because au fond high 

autocorrelation without a specified underlying reason (an a priori known deterministic 

control) may increase rather than reduce uncertainty (Koutsoyiannis, 2010) and thus may 

require a stochastic description. In the latter case, fundamental behaviours to be explored are 

(a) the long (e.g., power-law) or short (e.g., exponential) tails in probability distribution 

function and (b) the long or short tails of the autocorrelation function. In both cases, long tails 

imply high uncertainty and may comply with the maximum entropy principle applied with 

certain constraints (Koutsoyiannis, 2005a, 2005b). 

 It should be emphasized from the beginning that the scope of this paper is more 

explanatory than descriptive. In this respect, some general properties of a candidate rainfall 

modelling approach, rather than the construction of a complete and accurate model, are 

sought. Besides, as the empirical basis of this study is the Iowa data set which comprises only 

seven uninterrupted single storms, it is impossible to study all aspects of the rainfall process. 

and generalize the validity of our  findings for other seasons or other locations. For example 

intermittency, a very important peculiarity of the rainfall process is left out of this study. For 

the latter, and especially its relationship to the maximum entropy principle, the interested 

reader is referred to a recent study by Koutsoyiannis (2006b). 

2. General properties of rainfall data set 

2.1 The data 

Seven storm events of high temporal resolution, recorded by the Hydrometeorology 

Laboratory at the Iowa University (Georgakakos et al., 1994), are the data set of this study. 

The original measurements were taken every 5 or 10 seconds; however, for uniformity here 

we use the 10-second resolution for all events. Figure 1 illustrates the patterns of the seven 

storms. 



The events are characterized by a variable duration and also exhibit large statistical 

differences among them. Specifically, summary statistics like the mean, the standard 

deviation, the skewness and the kurtosis, shown in Table 1, differ notoriously among the 

events, up to two orders of magnitude (e.g., the kurtosis coefficient). In the following 

analyses, the different events are analyzed either separately or jointly. For the latter type of 

analysis, which is consistent with the scope of the paper to seek whether a single model can or 

cannot generate all different types, a merged sample of all events is used. 

2.2 Scaling in state 

The term scaling in state (Koutsoyiannis, 2005a) refers to the power-law behaviour of the 

probability distribution of a process. Whether or not a natural process is characterized by a 

power-law distribution is of great importance, as a power-law process implies that extreme 

events are not only more frequent in comparison to an exponential-law process, but also more 

severe. Clearly, the frequency and the magnitude of extreme events in natural processes like 

rainfall, have many practical consequences, e.g., in the design of hydraulic works. 

In practice, the identification and the characterization of a natural process as a power-

law process is a difficult task. Natural processes that are considered to be power-law, do not 

exhibit a single power law distribution over the entire domain. Thus, the range over which the 

power-law holds, i.e. the distribution tail, must be identified and this is not trivial. Actually, 

inferences related to distribution tail that are based on sample data are uncertain. Therefore, in 

the best case, the validity of a power law might be conjectured, if the empirical data are 

consistent with the hypothesized power law and do not falsify the power-law hypothesis. 

Generally, there are several methods for identifying power-law behaviour in empirical 

data, e.g., methods based on least-square fitting or maximum likelihood, but none of them 

seems to be universally accepted (see e.g., Clauset et al., 2009 and references therein). 

Nevertheless, one of the most common procedures used for discerning power-law behaviour 

in empirical data, which dates back to the end of 19th century in the works of Pareto, is based 

on least-square fitting.  



Mathematically, a random variable X follows a power-law distribution, if its probability 

density function is of the form 

 ( ) ( ) 1~ a

Xf x L x x− −  (1) 

where 0a >  is a constant known as the scaling exponent or the tail index, and L(x) is a slowly 

varying function, that is a function satisfying ( ) ( )lim / 1x L c x L x→∞ = , where c is a constant. 

The essence of a slowly varying function is that asymptotically it does not affect the power-

law behaviour of the distribution, thus controlling the shape of the distribution only over a 

finite domain of values. Straightforwardly from (1), the qth moment of a power-law 

distribution, defined as ( ): dq

q Xm x f x x
∞

−∞
= ∫ , diverges if q > a. 

It is also apparent from (1) that in a double-logarithmic plot, a power-law distribution 

(for both the probability density function and the probability distribution function) would be 

depicted as a straight line—at least in the range of values where the power law holds, i.e. the 

distribution tail. Thus, the slope of the least-square-fitted line to the tail of the empirical 

distribution (which, by virtue of (1) is proportional x
–a

) is an estimate of the state-scaling 

exponent. Using the aforementioned Pareto’s method, we depict in Figure 2 the empirical 

probability distribution (constructed by using the Weibull plotting position) of the merged 

Iowa dataset and the least-square-fitted line to the empirical tail. A power law with a ≈ 3 

seems to describe the tail (at probability of exceedence smaller than 1%). 

2.3 Scaling in time 

Since Hurst (1951) empirically discovered scaling in time (Koutsoyiannis, 2005b), else 

known as long-term persistence (LTP), this same behaviour has been identified in many other 

natural processes, as well as time series from many other scientific disciplines, e.g., in 

economy and in network traffic (e.g., Baillie, 1996; Leland et al., 2002). Ever since, LTP has 

been an active research field, as its importance necessitated not only theoretical accounts, but 

also, practical approaches concerning primarily the estimation of its strength and the 

development of models capable of generating synthetic time series with LTP behaviour.  

Basically, scaling in time can be defined in terms of the averaged process on several 

time scales k, i.e. 
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In a scaling process the following expression holds, i.e.,  

 
( ) ( ) ( )1

d
k H

X XX k X tτ µ µ− − ∼ −     (3) 

for any t and τ, where H is the scaling exponent or the so-called Hurst coefficient, and 
d

∼  

stands for equality in probability distribution. This process has recently been termed the 

Hurst-Kolmogorov process (HK; to give credit to Kolmogorov, 1940, who was the first to 

propose it). If X is Gaussian the process is also called fractional Gaussian noise (fGn), due to 

Mandelbrot and Van Ness (1968). As can be easily derived by (3), ( )
1

k

H

XX
kσ σ−= , that is, the 

aggregated process's standard deviation is proportional to 1Hk −  and not to 0.5k −  as is in the 

case of independent processes. In addition, the autocorrelation function ( ) 2 2~ Hρ τ τ −  as 

τ →∞  and the spectral density S(ω) ~ ω
1 – 2H

. While in the HK process the property (3) holds 

for all time scales, in other processes it may hold only asymptotically, as scale tends to 

infinity. Again the Hurst coefficient H is an important characteristic of the asymptotic 

behaviour. For example, in a Markovian process, H = 0.5 (as in independent processes).  

With reference to LTP identification and parameter estimation—a non trivial issue—

many methods have been developed (e.g. based on maximum likelihood, the periodogram, the 

variance, the rescaled range and others concepts (e.g., Taqqu et al., 1995; Taqqu and 

Teverovsky, 1998; Tyralis and Koutsoyiannis, 2010), each having its advantages and 

drawbacks.  

In this study, we chose to estimate the Hurst coefficients H of each of the seven storm 

events, and additionally of the merged dataset, by using a method that is based on the scaling 

property of the standard deviation, i.e., ( )
1

k

H

XX
kσ σ−= . Taking the logarithms, it follows that 

( ) ( )ln 1 ln lnk XX
H kσ σ= − + , and consequently, the aggregated sample standard deviation 

( )k
X

σ  versus the timescale k in a double-logarithmic plot, would be depicted as a straight line 

(at least in the timescale range where the scaling holds) and the estimated Hurst coefficient is 

H = 1 + η, where η is the slope of the fitted linear regression line. 

The estimated Hurst coefficients of the seven storm events are presented in Table 1; the 

variation among the estimated coefficients is high, from 0.77 to 0.97 with a mean value 0.88. 



Nevertheless, under the assumption that the seven storm events can be considered as the 

realizations of a single process, a better estimate of the Hurst coefficient would result if the 

estimation is carried out on the merged dataset, taking care in the aggregation procedure that 

individual storm events do not interfere with each other. As Figure 3 reveals, the scaling in 

the merged event seems to hold over the whole range of timescales, while the estimated Hurst 

coefficient is 0.94. 

3. Stochastic analysis of the rainfall data set 

3.1 The simulation scheme 

As previously mentioned, the major target of this study is first to explore if the seven storm 

events could be considered as the outcome of a sole and simple stochastic process, and 

second, to identify the basic characteristics of this process. To this aim we proceeded 

heuristically; that is, we set a stochastic simulation scheme to generate synthetic rainfall series 

whose statistics are subsequently compared with those of the observed records. The aim is to 

check whether one cannot reject the hypothesis that the statistics themselves are coincident 

and therefore the observed and synthetic records could be regarded as realizations of the same 

stochastic process. We considered different stochastic processes. In principle, candidate 

processes should include power law as well exponential solutions for both the marginal 

probability distribution and the autocorrelation. As mentioned above, there are two major 

questions that need to be answered: the first, concerns the scaling in state, i.e., whether or not, 

the stochastic process's marginal probability distribution is power type or exponential type. 

The second, concerns the scaling in time, i.e., whether of not, the autocorrelation structure is 

power type or exponential. 

Regarding the marginal distribution, it is straightforward that realizations from a 

stochastic process with a power-type marginal distribution would exhibit large differences 

from an exponential marginal distribution, mainly because a power-type distribution assigns 

large probabilities to the extreme events, which signifies high variability and uncertainty. 

Clearly, this behaviour is in agreement with the large variability observed in the seven 



recorded storm events, and in addition, the whole dataset does not falsify the power-law 

hypothesis of the marginal distribution (see section 2.2). Consequently, the power-law 

hypothesis of the marginal distribution is accepted as rational and valid and only stochastic 

processes with power law marginal distribution were considered for the simulation.  

In contrast to the choice of the marginal distribution, the a priori decision of a particular 

autocorrelation structure for the stochastic process is not simple. Short term persistence (STP) 

models have been a frequent choice in simulating natural phenomena, but they are often 

unjustifiably adopted (Koutsoyiannis and Montanari, 2007; Koutsoyiannis et al., 2009). In 

fact, an LTP autocorrelation structure, in many cases, may be more appropriate (see, for 

instance, Mandelbrot and Van Ness, 1968; Mandelbrot and Wallis, 1969). Additionally, it is 

not clear, how intensively the autocorrelation structure of a stochastic process—taking into 

account that the marginal distribution remains the same—affects the variability of the sample 

statistics among different realizations, e.g., the statistics among the simulated storm events 

addressed in this study. Thus, even in the case when the empirical evidence supports the 

adoption of a certain autocorrelation structure, and in view of the intrinsic uncertainty of this 

choice, it is valuable to perform a comparison of different scenarios, i.e., a comparison 

between STP and LTP autocorrelation structures. Therefore, this rationale suggests a side-by-

side comparison between an STP model and an LTP model in view of the behaviours of the 

observed data. 

The following sections present the simulation scheme which consists of the following 

seven steps: (1) application of an appropriate normalizing transformation to the original 

dataset (section 3.2); (2) analysis of the empirical ACF (section 3.4); (3) identification and 

calibration of an STP model and an LTP model (sections 3.5 and 3.6) to the normalized 

dataset; (4) correction of the model standard deviation bias (section 3.7); (5) simulation of 

normal synthetic time series (section 3.8); (6) generation of the synthetic rainfall time series 

by applying the inverse transformation (see section 3.2) to the normal synthetic time series; 

and (7) statistical analysis of the synthetic time series (section 4). 



3.2 Normalizing the original data 

The Gaussian or the Normal distribution is probably the most known and the most widely 

used distribution in statistics, with applications also in natural sciences. There are two 

theoretical reasons that justify the ubiquity of the Normal distribution in statistics and its 

application in other scientific fields. The first, relates to the central limit theorem (CLT) 

that—loosely speaking—states that the sum of independently and identically distributed (i.i.d) 

random variables tends to the Normal distribution as the number of summands tends to 

infinity. The second is the principle of maximum entropy (Jaynes, 1957), which states that, 

among all possible distributions with known mean and variance, the normal distribution is the 

one that maximizes the Boltzmann-Gibbs-Shannon information entropy (see also Shannon 

Claude and Weaver, 1948). 

Nevertheless, it seems that geophysical data are seldom normal. Empirical data show 

that many geophysical processes, like rainfall and river discharge, may depart mildly or 

severely from normality, especially at small time scales. A relevant example is the dataset 

addressed in this study. Specifically, departures from normality may be identified in 

skewness, e.g., positively or negatively skewed empirical data, in the asymptotic behaviour of 

the distribution tail, e.g., a stretched exponential tail or a power-type tail, and of course, in the 

variable's domain. Thus, as there exist theoretical reasons that favour normality in many 

cases, theoretical reasons also exist that do not support it (see e.g., Koutsoyiannis, 2005a). 

For instance, it is well known that a normal variable ranges over the whole real axis, 

while many natural processes are positively defined, that is, have a lower limit at zero, while a 

solid reason to fix an upper limit very rarely exists. While the previous reasons explain why 

departures from normality are so common in nature, a formal and generalized method for 

simulating non-normal data with a certain autocorrelation structure does not exist, although 

heuristic solutions were frequently proposed (for a hydrological example, see Montanari et 

al., 1997). In contrast, several methods exist addressing the simulation of normal data with 

STP or LTP autocorrelation structures (e.g., Box et al., 1994; Koutsoyiannis, 2000; Brockwell 

and Davis, 2009). A common technique for simulating non-normal data consists of 



transforming the non-normal dataset to normal, by applying a normalizing transformation, 

next, simulating normal data by implementing a standard model, and finally, de-normalizing 

the normal data by applying the inverse transformation. Basically, this is the methodology 

followed also in this study, which presents the inconvenience that finding an appropriate 

normalizing transformation is not always a trivial task, and clearly, a general method for 

normalizing all types of data does not exist. It is well known that there are some general and 

commonly used families of transformations, like the Box-Cox family of transformations (Box 

and Cox, 1964), that in many cases give satisfactory results. Unfortunately, such general and 

simple transformations were not effective for the case of the Iowa dataset. In particular, while 

the application of the Box-Cox transformation resulted in approximately normal data for the 

upper empirical tail, it failed to normalize the lower tail, namely the values near zero. A 

frequently used solution to solve this problem is the normal quantile transform (also called 

normal quantile score; Kelly and Krzysztofowicz, 1997) which, however, is an empirical 

transformation that is defined over the range of the observed data only and cannot be 

extrapolated. 

Therefore, in order to normalize the Iowa dataset we introduce here heuristically (by 

extending a transformation by Koutsoyiannis et al., 2008) a five-parameter normalizing 

transformation given by 

  ( ) ( )( ) ( ) ( ){ }21
1 ln 1

ζ
z t g x t α x t β γ δ x t γ

δ

−    = = + + + + −          
 (4) 

where z(t) and x(t) are the transformed and original values of the rainfall intensity, which are 

realisations of the stochastic processes Z(t) and X(t), respectively, and α, β, γ, δ, ζ are the 

parameters to be estimated. The two factors of the product in the right hand side are 

introduced to normalize the lower and the larger values, respectively. 

While this transformation was identified heuristically, its construction was based on two 

theoretical aspects. First, equation (4) ensures that the random variable Z ~ N(0, 1) ranges 

from−∞  to ∞ . Obviously, inspection of (4) reveals that for { } ( ), , , 0,α β δ ζ ∈ ∞  and 

( ),0γ ∈ −∞ , the random variable ( ),Z ∈ −∞ ∞ , as ( )
0

lim
x

g x+→
= −∞  and ( )limx g x→∞ = ∞ . 

Second, the probability density function (pdf) of the random variable X should be long tailed 



as the empirical evidence supports this assumption (see section 2.2). Again, inspection of (4) 

reveals that for large values of x, g(x) ~ [2β
2
 (1+ 1/δ)ln x]

0.5
, and taking into account that fZ(z) 

~ exp(z
–2

/2) and combining the two equations, we get fX(x) ~ fZ(g(x)) ~  x
–β2 (1+ 1/δ)

 and thus the 

pdf of the variable X is long tailed.  

Finally, we estimated the parameters of (4) for the transformed merged Iowa dataset by 

using the method of least-squares, and particularly, we numerically minimized the sum of 

squared errors between values of the standardized normal variate that correspond to the values 

of the empirical normal distribution (obtained by applying the normal quantile 

transformation) and the respective values result from the application of (4) to the original 

rainfall values. The resulted estimates were α = 0.41, β = 2.49, γ = -2.13, δ = 4.09 and 

ζ = 1.18. The transformed data in comparison with the original data are presented in Figure 4. 

Clearly, as the Figure 4 demonstrates, the transformed data are satisfactorily normalized. 

3.3 Identification and calibration of the stochastic models 

A Gaussian (normal) stochastic process is completely characterized when its second-order 

distribution, i.e., ( ) ( ) ( ){ }, ; , ,X i j i j i i j jF x x t t P X t x X t x= ≤ ≤  for any i ≠ j, is known. 

Normalizing the marginal distribution of a stochastic process by a transformation, does not 

necessarily result in jointly normal distribution (Feller, 1971, p.70). However, it is important 

to check if a particular, marginally normalized, data has also become Gaussian in terms of the 

multivariate joint distribution or not. A rough indication of joint normality is provided by the 

linear relation of conditional expectation of a variable Xi given Xj for i ≠ j. Figure 5 depicts the 

normalized rainfall intensity versus the 1-time-step and 10-time-step shifted normalized 

rainfall intensity. It can be seen that the empirical points are spread around a straight line, 

which is an indication of joint normality. This linearity should not be regarded as a surprise, 

given that it is consistent with the principle of maximum entropy applied on a multivariate 

setting with constraints of known mean, variance and lag-1 autocorrelation. 

As discussed in section 2.3, scaling in time exists and is quantified by an estimated 

Hurst coefficient H = 0.94. Similarly, analysis of the transformed dataset, using the same 

methods as in section 2.3, reveals also a high value of the Hurst coefficient, i.e., H = 0.92. 



Thus, if we accept the assumption of scaling in time, a serious issue arises; that is, almost all 

classical estimators of statistics (exception is the mean value) are highly biased (e.g., 

Koutsoyiannis, 2003). So in order to set up an accurate and consistent stochastic model to 

simulate a normal process—that is, a model that sufficiently reproduces the mean, the 

standard deviation and the autocorrelation structure of the observed sample—unbiased and 

accurate estimates of the aforementioned statistics are necessary. 

3.4 Empirical autocorrelation function (ACF) 

It is well known, that for finite samples the typical estimate ˆ
lρ  of the lag-l 

autocorrelation is a biased estimator of the true autocorrelation lρ  and the more intense the 

autocorrelation structure is the more biased the estimator becomes. In particular, in the 

presence of scaling in time the bias can be corrected by the following formula (see 

Koutsoyiannis, 2003 and the references therein), 

 
2 2 2 2

1 1
ˆ 1l l H Hn n

ρ ρ − −

 = − + 
 

%  (5) 

where lρ%  stands for the unbiased estimator and H is the Hurst coefficient. 

In this study, we used the unbiased estimator in (5) to estimate the empirical 

autocorrelation coefficients. We clarify, that to estimate ˆ
lρ  and consequently to estimate the 

unbiased estimator given in (5), we used the transformed merged sample that comprises the 

seven transformed storm events. This is a reasonable choice if we reckon the seven events as 

the outcome of a single process; and thus, while the empirical ACF may differ among events, 

all events share the same theoretical ACF. Furthermore, we note that we took special care in 

the estimation of the covariance in order to avoid overlapping among the events; specifically, 

we eliminated all products of the form ( ) ( )ˆ ˆ
t X t l Xx xµ µ−− −  when tx  and t lx −  do not belong 

in the same storm event, and adjusted accordingly the number n of the sample size. The 

estimated unbiased empirical ACF—given a Hurst coefficient equal to H = 0.92, and for lags 

approximately up to 1000—is depicted in Figure 6. Clearly, as Figure 6 attests, the empirical 

autocorrelation structure is very intense, and particularly, the values of the small-lag 

autocorrelation coefficients are near to 1, while for lags near to 1000 the values are as high as 

0.85. 



3.5 The short-term persistence model 

Probably, the most common STP stochastic model is the lag-one autoregressive model AR(1). 

This model belongs to the general family of stochastic models known as autoregressive 

moving-average models ARMA(p,q)—comprehensively presented in Box et al. (1994). It is 

important to note that the ARMA(p,q) family, and especially the AR(1) model are not able to 

reproduce the scaling behaviour in time or to preserve the Hurst coefficient (e.g., 

Koutsoyiannis, 2002). Consequently, they may be inappropriate for simulating natural 

phenomena exhibiting LTP. 

Nevertheless, while from a theoretical viewpoint ARMA(p,q) models are considered 

STP models, for increasing values of the autoregressive and moving average order p and q 

they can provide very good approximations of the LTP structure and thus manage to 

reproduce, from a practical point of view, the scaling in time or to preserve the Hurst 

coefficient at least for small sample sizes (Papalexiou, 2007). It is clear, though, that high 

order ARMA(p,q) models are not parsimonious, i.e., many parameters need to be estimated 

therefore increasing the estimation variance.  

Here, we chose the ARMA(2,2) model for the simulation of the normalized rainfall 

intensity. It is a model frequently used in hydrology that is able to generate time series that 

preserve the mean value µX, the variance 2

Xσ  and the first four autocorrelation coefficients 

{ }1 2 3 4, , ,ρ ρ ρ ρ . The stochastic process ( ){ },  X t t T∈  that results from an ARMA(2,2) model 

is defined by 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 2 1 2X t a X t a X t t t tβ ε β ε ε= − + − + − + − +  (6) 

where { }1 2 1 2, , ,a a β β  are parameters, and ( )tε  is a normal white-noise process, i.e. consisting 

of independently, identically and normally-distributed random variables with mean 0εµ =  

and variance 2

εσ . Using typical estimation methods (Box et al., 1994), the resulting 

parameters for the transformed merged Iowa dateset are 

{ }1 2 1 21.51, 0.51, 0.57, 0.19, 0.11a a εβ β σ= = = − = − = . 

Once the model parameters are estimated, the theoretical ACF of the ARMA(2,2) for 

lags 3τ ≥  degenerates to the ACF of an AR(2), i.e., 1 1 2 2τ τ τρ α ρ α ρ− −= +  and thus can be 

calculated recursively. Figure 6 depicts the theoretical ACF of the fitted ARMA(2,2) model in 



comparison with the empirical ACF. Clearly, it preserves the first four autocorrelation 

coefficients, as expected, and also performs well for lags up to 50. Nevertheless, for higher 

lags, it clearly deviates from the empirical ACF as the exponential character of the theoretical 

ACF unfolds.  

3.6 The long-term persistence model 

Since the time when Hurst (1951) discovered the LTP behaviour, the necessity to consistently 

simulate natural phenomena that exhibit LPT has led to the development of several stochastic 

processes and algorithmic procedures that reproduce the LTP behaviour. Among the most 

common models are several algorithmic approximations of the HK (or fGn) process by 

Mandelbrot and Wallis (1969) Mandelbrot (1971), O’Connell (1974), Koutsoyiannis (2002), 

and the FARIMA(p,d,q) models introduced by Granger and Joyeux (1980) and Hosking 

(1981), that have gained popularity mainly in the last decade (for an application to hydrology 

see Montanari et al., 1997).  

The theoretical ACFs of the HK and FARIMA(0,d,0) processes are  

 ( )FGN 2 22 221
| 1| 2 | | | 1|

2

H HH H

τρ τ τ ττ −+ ∼= − − +  (7) 

 
( ) ( )
( ) ( )

FARIMA 2 1
1

1

d
d d

d d
τ

τ
ρ τ

τ
−Γ − Γ +

= ∼
Γ Γ + −

 (8) 

respectively. Clearly, the ACFs of those two models are asymptotically coincident, with 

d = H - 1/2, as (7) and (8) attest, whereas, time series generated by both of them preserve the 

scaling exponent H. Moreover, while the HK process model is a very simple model—

essentially is one-parameter model, the FARIMA(p,d,q) models are much more flexible as the 

orders of p and q controls the STP behaviour of the model.  

Here we used a simple yet general approach to simulate LTP, obtained by 

approximating the real process with the sum of five independent AR(1) processes (note that 

Koutsoyiannis (2002) has shown that good approximations can be obtained even with 

summing three independent AR(1) processes). The implementation comprises two steps: first; 

we fit a generalized power-type (GP) ACF to the empirical ACF (see 3.4) and second; we 

approximate the fitted ACF by the ACF obtained as the sum of five independent AR(1). 



Regarding the first step of our approach, we fit a theoretical ACF (consistent with the 

empirical evidence) to the empirical ACF in order to be able to extrapolate the correlation 

coefficients for lags as high as desired, instead of being confined in the lag-range provided by 

the estimated empirical ACF. 

Here, we use a theoretical three-parameter power-type ACF that has the form (similar to 

Gneiting and Schlather, 2004). 

 

1

GP : 1

b c

c
a

τ

τ
ρ

−
  = +  

   
 (9) 

where { }0, 0, 0a b c> > >  are parameters. The form of (9) can be considered as a natural 

generalization of an exponential ACF as the ( )GP

0lim exp /
b

c aτρ τ→ = − . Asymptotically (9) 

behaves as GP

τρ  ~ t
 –b/c

 and therefore, (9) and (7) possesses the same asymptotic behaviour if 

( )/ 2 1b c H= − . As a result, the fitted GP

τρ  would be consistent with the estimated H = 0.92 if 

b/c = 0.16. Thus, we fit the GP

τρ  by minimizing the square error between the GP

τρ  and the 

empirical ACF and by setting as a constrain b/c = 0.16. The estimated parameters are 

{ }12881, 0.51, 3.18a b c= = = . The fitted GP

τρ  is depicted in Figure 6, which shows that the 

fit is satisfactory. 

Turning to the second step of the LTP simulation procedure mentioned above, we 

decided to use an LTP model made up by the sum of five independent AR(1) process by 

following the idea that was first introduced by Mandelbrot (1971), to approximate the HK 

process. The same method was used by Koutsoyiannis (2002), for the same purposes, while 

Mudelsee (2007) proved empirically that the sum of n inflows generated by an AR(1) model 

in a river network, with n sufficiently large, ends up with a collective river discharge that 

exhibits LTP behaviors.  

Therefore the LTP model that was used herein to simulate the normalized rainfall 

intensity is given by 

 ( ) ( )
5

1

i

i

Y t Y t
=

=∑  (10) 

where ( ) ( ) ( )1i i i iY t a Y t tε= − +  is the i-th AR(1) process with mean 0
iYµ = , variance 

iYσ , 

lag-one autocorrelation coefficient ai and and ( )i tε  is a normal white-noise process, with 



mean ( )1 0
i ii Yaεµ µ= − =  and variance ( )2 2 21

i ii Yaεσ σ= − . Under the assumption of 

independence of the five AR(1) processes it can be easily proven that the theoretical ACF of 

(10) is given by 

 
5 5

LTP 2 2

1 1

,  with 1
i ii Y Y

i i

aτ
τρ σ σ

= =

= =∑ ∑  (11) 

The parameters of the five independent AR(1) processes were estimated by minimizing the 

square error between the equations (9) and (11) for lags as high as 10
4
. The resulting 

estimates are { }
1

2

1 0.9943, 0.075Ya = =σ , { }
2

2

2 0.8719, 0.029Ya = =σ , 

{ }
3

2

3 0.999932, 0.179Ya σ= = , { }
4

2

4 0.999441, 0.138Ya σ= =  and 

{ }
5

2

5 0.999998, 0.578Ya σ= = . As the Figure 6 reveals, the fitted LTP

τρ , up to the lag-10
4
, is 

satisfactory. 

3.7 The standard deviation bias 

One issue in stochastic modelling that may have serious consequences on the validity and 

accuracy of the simulation, and is often neglected, concerns the differences in statistics that 

may occur between the theoretical process and its realizations. While the estimate of the mean 

is unbiased regardless of the dependence structure, this does not hold for the standard 

deviation. In fact, it is well known that the standard estimator S of the standard deviation is 

slightly biased even in the case of normally distributed and independent data (e.g., Bolch, 

1968). However, the bias may become very large in a time dependent process as it increases 

monotonically with the increase of the autocorrelation. For certain known ACFs, like the one 

of the HK process, unbiased estimators have been developed (see Koutsoyiannis, 2003 and 

references therein). 

In order to assess the standard deviation bias in random samples generated by the STP 

and the LTP models described in section 3.5 and 3.6, and for several different sample sizes, 

we performed a Monte Carlo simulation. Specifically, at first, 5000 independent samples were 

generated by each model and for several sample sizes, and in turn, a standard deviation 

correction factor was calculated, defined by [ ]SD : /c E Sσ=  where σ is the true standard 

deviation of the STP and the LTP models, chosen as 1 in our simulations and E[S] is 

calculated by Monte Carlo simulation. 



The results, that are depicted in Figure 7, are remarkable, especially in the case of the 

LTP model. In fact, the bias correction factors, for a sample size of 1000, are as high as 1.9 

and 3.1 for the STP and the LTP models, respectively, while even for a very large sample size 

equal to 50000, in the LTP case, the correction factor sustains a value of 1.7. Given that the 

correction factor depends of the sample size, the choice of the appropriate correction factor 

should be carried out by considering the number of the data generated with the simulation. 

Given that the normalizing transformation was applied to a sample of 29536 values that 

comprised the seven storm events, it follows that we imposed a unit standard deviation to that 

complete sample. Consequently, all samples generated in this study, irrespective of their size, 

were multiplied by the correction factor that corresponds to a size of 29536 size, that is, 

SDc  = 1.04 for the STP model and SDc  = 1.81 for the LTP model. In this way the correction to 

the standard deviation was imposed depending on the sample size that was used to constrain 

the standard deviation itself during the normalizing transformation. 

3.8 Sample size and number of samples  

As shown in Table 1, the seven recorded storm events have all different sample lengths 

varying form 1034 to 9697 values. In order to compare the observed statistics with those as 

the synthetic series, it would be appropriate that the simulations have the same length of the 

observed records. For practicality only 3 sample sizes were used namely: 1000 (L1), which is 

very close to the size of event 7; 4000 (L2), close to the size of events from 2 to 6; and 10000 

(L3) representing event 1. 

We generated 10000 synthetic series for each sample length and for each model. 

Finally, we calculated for every synthetic series the mean, the standard deviation, the 

skewness, the kurtosis and the autocorrelations, which were compared with the respective 

statistics of the observed records. 

4. Results of the stochastic simulation 

Figure 8 reports an example of visualized simulated events for the three different sample sizes 

(L1, L2 and L3) considered here and the two different models (three events generated by the 



LTP model on the left and three by the STP model on the right). Some differences in the 

patterns generated by the models are visible. For example, the pattern of the LTP model is 

characterized by a higher variability (although the marginal distributions are the same). By 

comparing the patterns with those of the observed records, which are shown in Figure 1, one 

may notice that the variability of the observed record looks better reproduced by the LTP 

model. 

 Figure 9 shows box plots of selected statistics computed on the simulated data (in this 

case also by referring to the original probability distribution), namely, mean, standard 

deviation, skewness and kurtosis. The observed statistics are also shown with dots. The box 

and the whiskers encompass 50% and 99%, respectively, of the computed statistics, while the 

median is indicated by a horizontal straight line. The box plots clearly show the different 

behaviours of the two models. Looking at the mean value, one should note that, not 

surprisingly, the two models are characterized by nearly the same median of the mean, but the 

variability in the LTP model is higher. Also expected is the higher variability of the standard 

deviation, skewness and kurtosis that is depicted in the other box plots. One may note that the 

LTP model is more skewed than the STP one. This result is explained by the higher 

variability of a process (rainfall) that is bounded at zero. In general one may note that the 

higher uncertainty of the LTP model makes the fit more satisfactory, even though the 

observed points are very few and therefore do not allow more than a qualitative assessment. 

 Figure 10 shows a comparison between the observed autocorrelation functions with 

those simulated by the models. First of all, one notes that the autocorrelation coefficients of 

the LTP model are higher in the tail of the autocorrelation function. This result is expected. 

Another relevant feature is the higher correlations showed by the STP model for low lags. 

This result, which is not intuitive, is due to the fact that the STP model, in order to reach a 

better fit of the tail of the ACF, reacts by increasing also the autocorrelation coefficients for 

low lags. Conversely, the power law behaviour of the LTP model allows one to reach a better 

fit of the tail of the ACF without increasing much the correlation for low lags. Even in this 

case, the autocorrelation function of the LTP appears to be more convincing in view of the 



observed pattern. One should note that this assessment is again qualitative in view of the 

small number of observed events. 

 However, apart from the comparison between the two models, one relevant conclusion 

is that both models look able to provide, within a relatively simple framework, a satisfactory 

fit of the observed behaviours. 

5. Conclusions and discussion 

Summarizing the above investigations, it can be said that a single and rather simple stochastic 

model can represent all rainfall events and all rich patterns appearing in each of the separate 

events making them look very different from one another. From a practical view point, such a 

model is characterized by high autocorrelation at fine scales, slowly decreasing with lag, as 

well as by distribution tails slowly decreasing with rainfall intensity. Such an autocorrelation 

form can indeed produce huge differences among different events and such a distributional 

form can produce enormously high rainfall intensities at times. Both these behaviours are just 

opposite to the more familiar processes resembling Gaussian white noise, which would 

produce very “stable” events with infrequent high intensities. In this respect, both high 

autocorrelations and distribution tails can be viewed as properties enhancing randomness and 

uncertainty (or entropy).  

Whether the tails of both the marginal distribution and autocorrelation functions are 

long (meaning that are described by power-law functions) is difficult to conclude based 

merely on the data set of this study. Both these power-law functions are by definition 

asymptotic properties, and the exponents of power laws are theoretically defined for state or 

lag tending to infinity. In this respect, it seems impossible to verify such asymptotic laws by 

empirical studies, which necessarily imply finite sample sizes. But it is important that the 

empirical evidence presented in the current study does not falsify the hypothesis that both tails 

are long. Other empirical studies published recently do not falsify this hypothesis as well. 

Thus, Koutsoyiannis (2004a, 2004b) used daily rainfall records from numerous gauges 

worldwide, each covering a period longer than 100 years, and showed that the observed 

behaviours are consistent with the long distributional tail hypothesis.  



 If the hypothesis of a long tail of the distribution function is accepted, it seems that 

this can be quantified by an exponent α of about 3, which implies that only the first three 

moments of the distribution exist whereas all others are infinite. If the hypothesis of a long 

tail of the autocorrelation function is accepted, it seems that this can be quantified by a Hurst 

coefficient H as high as 0.94. Based on these findings, the construction of a stochastic model 

admitting asymptotically long tails from the outset seems a reasonable choice. After all, in a 

dynamical systems context, even the randomness is an asymptotic property per se, in the 

sense that it implies an infinite number of degrees of freedom. The fact that an infinite 

number of degrees of freedom cannot be verified (and perhaps neither falsified) empirically, 

does not preclude us from successfully using probabilistic descriptions and stochastic models 

of several processes including rainfall.  

 As mentioned earlier, long tails can be viewed as an enhancement of randomness and 

uncertainty in these processes. In the framework of this enhanced randomness, it seems to be 

useless to analyze each rainfall event separately as an attempt to infer dynamics of rainfall. 

Such an attempt, even using sophisticated methods such as wavelets, can perhaps be 

paralleled with one’s attempt to explain the dynamics of the tossing of a coin by observing a 

series of "heads" and "tails". In both cases, it may be misleading to seek substantial 

information in extremely random occurrences. A more useful target for such cases would be 

to elevate from the obscurity the underlying randomness and seek its own laws – and this was 

the main target of this paper.  
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Table 1 Summary statistics of the seven storm events. 1 

Event # 1 2 3 4 5 6 7 All 

Sample size 9697 4379 4211 3539 3345 3331 1034 29536 

Mean (mm/h) 3.89 0.50 0.38 1.14 3.03 2.74 2.70 2.29 

Standard 

deviation (mm/h) 
6.16 0.97 0.55 1.19 3.39 2.20 2.00 4.11 

Skewness 4.84 9.23 5.01 2.07 3.95 1.47 0.52 6.54 

Kurtosis 47.12 110.24 37.38 5.52 27.34 2.91 -0.59 91 

Hurst Exponent 0.94 0.79 0.89 0.94 0.89 0.87 0.97 0.89 

 2 

 3 

Figure 1 The seven storm events recorded by the Hydrometeorology Laboratory at the Iowa 4 

University. 5 



 6 

Figure 2 Empirical probability distribution (Weibull plotting position) of the merged Iowa 7 

dataset and the least-square-fitted line to the empirical tail. 8 

 9 

Figure 3 Double logarithmic plot of sample standard deviation versus scale of averaging for 10 

the normalized merged event. 11 



 12 

Figure 4 Probability plot of the natural (recorded) and the normalized rainfall intensity data. 13 

 14 

Figure 5 Scatter plot of normalized rainfall intensity for time lags 1 and 10. 15 



 16 

Figure 6 Empirical ACF of the normalized merged event (corrected for bias), theoretical ACF 17 

of the fitted STP model, fitted power-type ACF given in eq. (9), and approximation of the 18 

latter by the sum of five AR(1) processes. 19 

 20 

Figure 7 Standard deviation bias correction factors for the STP and the LTP models for 21 

various sample sizes (dots and triangles) calculated by Monte Carlo simulation. 22 



 23 

Figure 8 Synthetic rainfall events generated by the LTP (the first three) and the STP (the last 24 

three) models for three characteristic samples sizes. 25 



 26 

Figure 9 Box plots of sample statistics estimated from the synthetic rainfall events generated 27 

by the LTP and STP models for the three characteristic sample sizes L1, L2 and L3. The dots 28 

represent the empirical points of the seven rainfall events. 29 



 30 

Figure 10  Empirical autocorrelation functions of the seven rainfall events and 99% 31 

prediction intervals of ACF for the LTP and STP models. 32 

 33 


