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Introductory note: Stochastics is more than 
calculations

Popular computer programs have made 
calculations easy and fast
But numerical results may mean nothing! 
It is better not to use them if we are unaware 
of the stochastic properties of the objects
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Misuse case 1: When bias is theoretically zero 
� Experiment: A Google search with terms multifractal rainfall 

moments was performed (see also Koutsoyiannis, 2010)

� The first (highest PageRank) paper was chosen and its first figure 
is reproduced here
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Can we really calculate the high moments of 
rainfall depths?
� High moments, i.e. mq := E[x q] for q = 4, 5, 6, 7, ..., depend 

enormously and exclusively on the distribution tail

� Recent research results (e.g. Koutsoyiannis 2004, 2005; Papalexiou
and Koutsoyiannis, 2010; and references therein) suggest power-
type/Pareto tail with shape parameter κ = 0.13-0.15, almost 
constant worldwide

� This reflects the (imperfect) scaling in state of rainfall rate

� Beyond qmax = 1/κ = 6.67 (for κ = 0.15) the moments are infinite

� However, their numerical estimates from a time series are always
finite: an infinite negative bias

� But below qmax it can be proved that the estimates are unbiased

� However, even below qmax, the estimation of moments is 
problematic; this can be demonstrated by Monte Carlo simulation
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Setting up the Monte Carlo (MC) simulation
� Random variable x (representing rainfall distribution tail, i.e. rainfall 

excess above a certain threshold) 

� Pareto distribution function with parameters κ (shape) and λ (scale)

P {x > x} =: F *(x) = (1 + κ x/λ)–1/κ

� Analytically calculated moments (B ( ) denotes the beta function)

mq= E[x q] = q (λ/κ)q B (1/κ – q, q) for q < 1/κ

mq= E[x q] = ∞ for q ≥ 1/κ

� Random sample x1, x2, ... xn, with size n = 100

� Moment estimator (a random variable)

͠mq= (1/n) Σ
n

i = 1 xi
q Note: E[͠mq] = mq → Unbiasedness

� Moment estimate (a numerical value)

͠mq= (1/n) Σ
n

i = 1 xi
q

Some inequalities (notice, underlined quantities denote random variables)

mq ≠ m͠q ≠ m͠q ≠mq (three conceptually different mathematical objects) 
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Results of Monte Carlo simulation
� The information content of the empirically estimated moments is high if the 

distribution of the random variable (͠mq /mq) is concentrated around 1

Is there any meaning of theoretical unbiasedness if the probability distribution of 
the statistical estimator is so broad and skewed?

� Only low 
moments 
(q = 1 and 2) 
have 
reasonably 
low variation

� All others 
vary within 
orders of 
magnitude 

� Even the 
medians are 
by one or 
more orders 
of magnitude 
lower than 1 
for q > 4

Distributions 
were calculated 
from 1000 
simulations
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Results of Monte Carlo simulation: probability 
density function of ͠m5

Mean, theoretical ≈ Mean, MC
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Here the bias is theoretically zero
However, the probability of calculating (from a unique sample) a value ͠m5 almost 
two orders of magnitude less than the true value (the mode) is two orders 
of magnitude higher than the probability of obtaining the true value (the mean)
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Even bracketing the true value of high moments between confidence 
limits may be impossible

Results of Monte Carlo simulation: confidence 
limits
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Misuse case 2: Bias induced even to 2nd order 
statistics due to temporal dependence
� Dependence is viewed through the autocorrelogram ρj (for lag j) of the process or 

else through the standard deviation σ (k) of the time averaged process at scale k :

� σ (k) is related to ρj by a simple transformation, i.e.,
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� The plot of σ (k) vs. k has 
been termed the 
climacogram

� The asymptotic slope (high 
k) in a logarithmic plot is a 
characteristic of scaling 
defining the so-called Hurst 
coefficient: 
H = 1 + slope

Slopes milder than -0.5, or H values in the interval 
(0.5, 1), indicate long-range dependence
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Long-range dependence: The Hurst-Kolmogorov 
(HK) process 

 

Properties of the 
HK process  

At an arbitrary 
observation scale  
k = 1 (e.g. annual) 

At any scale k 

Standard deviation σ ≡ σ (1)
 

σ (k) = k H – 1 σ   
(can serve as a definition of the HK process; 
H is the Hurst coefficient; 0.5 < H <1) 

Autocorrelation 
function (for lag j) ρj ≡ ρ

(1)

j  =ρ
(k)

j  ≈ H (2 H – 1) |j |2H – 2 

Power spectrum 
(for frequency ω) 

s(ω) ≡ s(1)(ω) ≈  

4 (1 – H) σ 2 (2 ω)1 – 2 H 
s(k)(ω) ≈  
4(1 – H) σ 2 k 2H – 2 (2 ω)1 – 2 H 

 

The simplest process with long-range dependence (long-term persistence), 
the Hurst-Kolmogorov process (after Hurst, 1951; Kolmogorov, 1940; see 
also Koutsoyiannis and Cohn, 2008), has constant slope of climacogram 
throughout all scales (power-law climacogram or perfect time scaling)

Also its autocorrelogram and power spectrum are power laws of lag j, 
frequency ω and scale k
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Short-range dependence: The Markovian process (AR(1))

 

Properties of the 
AR(1) process  

At scale  
k = 1  

At any scale k 

Variance γ0 ≡γ
(1)

0  
γ

(k)

0  = γ0 
k (1-ρ2) – 2 ρ (1-ρk)

 k2 (1-ρ)2   

Autocorrelation 
function (for lag j) 

ρj = ρ
 j  ρ

(k)

1  =
ρ (1-ρk)2

 k (1-ρ2) – 2 ρ (1-ρk)
 , ρ

(k)

j  = ρ
(k)

1  ρ
k(j-1)

 

Power spectrum 
(for frequency ω) 

sγ(ω) = 

s
(1)

γ (ω) 
s

(k)

γ (ω)/γ
(k)

0  = 2 + 4  ρ
(k)

1  
cos(2πω) – ρk    

 1 + ρ2k - 2ρk cos(2πω)
  

 

The simplest process with short-range dependence (short-term 
persistence), the Markovian process (or the AR(1) process), has 
autocorrelation defined by a single parameter ρ ≡ ρ1. In this it resembles 
the HK process. However, in contrast to the HK process, the climacogram 
does not have a constant slope throughout all scales 

Its autocorrelogram is an exponential law and, thus, tends to zero rapidly 
for increasing lag and/or scale (Koutsoyiannis, 2002)
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True values →  Mean, µ Standard deviation, σ Autocorrelation ρl for lag l 

Standard estimator x– := 
1
n ∑

i = 1

n

 xi s := 
1

n – 1  ∑
i = 1

n

  (xi – x–)2 rl
 := 1

(n – 1)s2
 ∑
i = 1

n – l

 (xi
 – x–)(xi + l

 – x–) 

Relative bias of 
estimation, CS 

0 ≈ 0 ≈ 0 

Relative bias of 
estimation, HKS 

0 ≈ 1 − 
1
n΄ − 1 ≈ − 

1
2n΄  ≈ – 

1/ρl − 1
n΄− 1     

Standard deviation 
of estimator, CS 

σ
n
      

Standard deviation 
of estimator, HKS 

σ
n΄

     

Note: n΄ := n 2 – 2H is the “equivalent” or “effective” sample size: a sample with size n΄ in CS results in 
the same uncertainty of the mean as a sample with size n in HKS (Koutsoyiannis, 2003; Koutsoyiannis & 
Montanari, 2007).  

Note 2: The same relationships hold (approximately) even for Markov processes but with n΄ defined as  

n΄ := n (1 – ρ)2

(1 – ρ2) – 2ρ (1 – ρn) / n  (Koutsoyiannis, 2002; Koutsoyiannis & Montanari, 2007). 

 

Impacts on statistical estimation: Hurst-Kolmogorov 
statistics (HKS) vs. classical statistics (CS)
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The variance of the estimator of mean 

The variance of the estimator of the mean 
of n IID random variables is σ2

Χ/n. Thus, 
the ratio plotted here for n = 100 is only 
0.01. For a Markovian process with, e.g.,  
ρ = 0.8 the ratio is approximately 10 
times greater, and for an HK process with 
H = 0.92 (so that ρ1 = 0.8) is about 50 
times greater!

In the same example, while for small 
samples the Markovian model results 
in much higher ratio than in the IID 
case, as the sample size increases 
the ratio quickly converges to the 
IID case. In contrast, in the HK case 
the convergence is extremely slow.
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Bias of the classical estimator of standard deviation

The classical estimator of standard 
deviation is approximately unbiased for 
IID random variables. However, as the 
temporal dependence becomes stronger, 
the estimator becomes more and more 
biased. Especially for the HK process with 
high H, the estimator is severely biased.
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There is a large difference in the 
bias of the estimator of standard 
deviation between the Markovian 
and the HK case. The bias in the 
HK case for n = 1000 equals that 
of the Markovian case for n = 20. 
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Bias of the classical estimator of autocorrelation
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Bias in the classical estimation of the Hurst coefficient

The Hurst coefficients were estimated 
from the slope of the climacogram 
using the classical estimator of 
standard deviation

Obviously, this method is 
inappropriate and demands extremely 
large samples to estimate the true 
Hurst coefficient value (for better 
methods see Tyralis and 
Koutsoyiannis, 2010)
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Example 1: Iowa fine resolution rainfall
Seven storm events of high temporal 
resolution, recorded by the Hydrometeorology 
Laboratory at the Iowa University 
(Georgakakos et al., 1994)

The unified sample suggests an HK behaviour
with a very high Hurst coefficient: H ≈ 0.99 
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Example 2: The annual rainfall in Maatsuyker Island 
(Australia)
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Maatsuyker Island Lighthouse (Australia), 
coordinates: -43.65N, 146.27E, 147 m, 
WMO station code: 94962
Data: 1892-2004, available from 
http://climexp.knmi.nl/getprcpall.cgi?someone@s
omewhere+94962+MAATSUYKER_ISLAND_LIGHT
HOUSE+

The time series suggests an HK 
behaviour with a very high Hurst 
coefficient: H ≈ 0.99 
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Example 3: The lower tropospheric temperature
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The global average tropospheric
temperature estimated from satellite data 

Available for the period 1979-2010, from 
http://vortex.nsstc.uah.edu/public/msu/t2lt/
tltglhmam_5.2

The time series suggests an HK 
behaviour with a very high Hurst 
coefficient: H ≈ 0.99 
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Concluding remarks
� The study of natural processes, including hydrological processes, 

necessarily relies on concepts and tools of stochastics (probability, 
statistics, and stochastic processes)—even if sometimes the stochastic 
character of such concepts is hidden behind complicated algorithms

� The abstract objects of stochastics need to be understood before they can 
be used in application studies

� Popular computer programs have facilitated calculation of numerical 
values of such objects 

� However, such numerical values may distort, or prevent the formation of, 
a coherent view of the natural behaviours

� Classical statistics rely on explicit or tacit assumptions, such as 
independence in time and exponential distribution tails

� Such assumptions are invalidated in natural processes, which suggest 
scaling in state (power-law distribution tails) and in time (long-range 
dependence)

� These departures of Nature from classical statistical assumptions imply 
high biases and notoriously increased uncertainty—and these should be 
kept in mind when exploring and modelling Nature
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