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Abstract 5 

After a significant delay of half a century since the discovery of the Hurst phenomenon in 6 

geophysics and after accumulation of evidence that climate may be consistent with the 7 

hypothesis of long-term persistence (LTP), discussion is currently ongoing about the 8 

implications of this hypothesis in climate research. However, recent publications admit-9 

ting LTP arrive to disagreeing conclusions. This may manifest incomplete understanding 10 

of this behavior and its consequences in statistical tasks. To offer some insight on this we 11 

demonstrate that LTP implies increased uncertainty on the long term and thus entails 12 

dramatic differences in estimations and tests, in comparison to classical statistics. On 13 

these grounds, we also discuss the problem of detection and attribution of climatic 14 

change.  15 

Introduction 16 

In two recent Letters, Cohn and Lins (2005) and Rybski et al. (2006) raise two important 17 

issues: (a) they find that both instrumental climatic records and reconstructed time series 18 

of climate are consistent with the hypothesis of long-term persistence, and (b) they 19 

suggest that this property should be taken into account in statistical tests and they offer 20 

methods to cope with this. Earlier, Koutsoyiannis (2003) arrived to similar conclusions. 21 

Cohn and Lins (2005) state: “It is therefore surprising that nearly every assessment of 22 

trend significance in geophysical variables published during the past few decades has 23 

failed to account properly for long-term persistence.” We share this opinion, as the LTP 24 

hypothesis (also known as Hurst phenomenon, Joseph effect, long memory, long-range 25 
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dependence, scaling behaviour, and multi-scale fluctuation; Koutsoyiannis, 2006) has a 26 

history of more than half a century since the discovery of LTP in geophysics by Hurst 27 

(1951), and even longer in mathematics and physics since the pioneering work by 28 

Kolmogorov (1940). Throughout these decades numerous studies have accumulated 29 

indications that LTP may be omnipresent in several natural (geophysical, biological) and 30 

human-associated (social, economical and technological) processes (for references see 31 

Kantelhardt et al., 2003; Koutsoyiannis, 2003; Montanari, 2003). This behavior seems to 32 

be particularly the case in climatic processes and harmonizes with the general recognition 33 

of a perpetually changing climate.  34 

 Cohn and Lins (2005) and Rybski et al. (2006) agree on the presence of LTP and the 35 

importance of taking it into account in statistical tests, and both base their tests essen-36 

tially on the same climatic record, the instrumental temperature record of the Northern 37 

Hemisphere between 1856 and 2004 (due to Climatic Research Unit – CRU – available 38 

from http://www.cru.uea.ac.uk/ftpdata/tavenh2v.dat). Interestingly, however, their con-39 

clusions on the so called detection or attribution problem are opposite. Rybski et al. 40 

(2006) conclude that the hypothesis that at least part of the recent warming cannot be 41 

solely related to natural factors, can be accepted with a very low risk, whereas Cohn and 42 

Lins (2005) state that, given what we know about the complexity, long-term persistence, 43 

and non-linearity of the climate system, this warming can be due to natural dynamics. 44 

This disagreement, in addition to the delay in incorporating the LTP behavior in the cli-45 

matic research, may indicate, in our opinion, that our understanding of this behavior and 46 

its consequences is not complete yet and that additional insights are needed. 47 

 In this respect, with this Letter we wish contribute our thoughts, views and analyses 48 

on these issues, and also put emphasis to another closely related issue: the high uncer-49 

tainty involved in such exercises. Specifically, LTP entails high uncertainty on the long 50 

term, much higher than in classical statistics that are based on the hypothesis of inde-51 

pendently identically distributed (IID) variables. The familiarity with the classical (IID) 52 
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statistical paradigm or even with typical short-term persistence (STP) stochastic proc-53 

esses may mislead us so as fail to consider the higher uncertainty associated with LTP.  54 

 As the focus of this study is on understanding rather than on providing accurate 55 

statistical tests, we will avoid a categorical answer to the question raised in the previous 56 

two Letters regarding the detection/attribution problem. But we will study it and expose 57 

our own views. We study the same basic data set as in both earlier studies (the CRU 58 

record, now extended up to 2005) as well as all six recently reconstructed temperature 59 

records of the northern hemisphere analyzed in Rybski et al. (2006) as auxiliary 60 

information (here abbreviated as JBBT98, MBH99, B00, ECS02, MM03, MSHDK05 61 

that stand respectively for Jones et al., 1998; Mann et al., 1999; Briffa, 2000; Esper et al., 62 

2002; McIntyre and McKitrick, 2003; and Moberg et al., 2005). The LTP properties of 63 

some of these and some other proxy series have been also studied in other works recently 64 

(Stockwell, 2006a) and earlier (Koutsoyiannis, 2003 for JBBT98).  65 

Long-term persistence and its formalisms 66 

 Since Hurst’s (1951) discovery of LTP, several formalisms and conceptualizations 67 

have been used to study it, on which the algorithms to detect this behaviour are based 68 

(Taqqu et al., 1995; Montanari et al. 1997). All formalisms include the so called Hurst 69 

coefficient (or exponent) denoted after Hurst as H (or as α in Rybski et al., 2006). In gen-70 

eral, the most common is the original formalism by Hurst, based on the so-called rescaled 71 

range statistic (R/S). In contrast, in climatological studies (e.g Vjushin et al., 2001; 72 

Kantelhardt et al., 2002; including Rybski et al., 2006) the most common formalism has 73 

been the so-called detrended fluctuation analysis (DFA), introduced by Peng et al. (1994) 74 

to study long-range correlations in DNA sequences. 75 

 A particular formalism should not be viewed just as an algorithm or a recipe to deter-76 

mine H. In contrast, it is important in understanding, conceptualizing and modeling of the 77 

underlying behavior. In this respect, an ideal formalism should have certain charac-78 
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teristics such as (a) easy understandability and transparency in order to enable perception 79 

of the behavior and not to hide its implications; (b) simplicity, in order to enable a prob-80 

abilistic description of the concepts it uses and hence a statistical framework of estima-81 

tion and testing; (c) objectivity, in order for its application to be as free as possible from 82 

arbitrary choices; and (d) consistency, in terms of the estimators it produces. Perhaps 83 

none of the available formalisms have all these properties (which emphasizes the need 84 

for development of better ones) but the properties can serve as reference when discussing 85 

different existing formalisms.  86 

 With respect to point (d), it should be reminded that in a stationarity framework (in 87 

fact always assumed in such analyses – at least in the null hypothesis) an estimate of H 88 

should be in the interval (0, 1) or, for processes with positive temporal dependence, in the 89 

interval (0.5, 1), as also pointed out in Cohn and Lins (2005) and Rybski et al. (2006). 90 

Values H > 1 simply indicate inconsistency of the algorithm. This is not difficult to 91 

verify: benchmark synthetic time series can be produced by a stationary model for which 92 

many algorithms for the estimation of LTP produce H > 1. 93 

 With reference to the points (a)-(d) listed above, DFA (used by Rybski et al.), may be 94 

far from an ideal method. This method is based on best fit polynomials that describe local 95 

“trends” on separate intervals of the data sequence. By construction, it may hide the 96 

important uncertainty characteristics, as will be discussed later, being a rather determi-97 

nistic conception (fitting of polynomials). It may be not simple enough to enable 98 

description of the probability distribution of the variables it uses (parameters of polyno-99 

mials). It may be not objective as the separation into intervals and the order of the poly-100 

nomial used are subjectively chosen by the user (e.g. Rybski et al. used a quadratic fit-101 

ting). And it may be not consistent as it can result in H greater than 1 (this is the case for 102 

ECS02, for which Rybski et al. gave H = 1.04; see Table 1).  103 

 This inconsistency is common to other methods: for example the original (Hurst’s) 104 

R/S algorithm often produces H > 1 and has several other deficiencies: it does not enable 105 
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an analytical computation of statistics and the method is associated with bias and low 106 

efficiency in the estimation of H (Koutsoyiannis, 2002, 2003). Even the maximum 107 

likelihood estimation method (which still depends on an assumed model, such as the 108 

fractionally differenced autoregressive moving average process, also called fractional 109 

ARIMA) is not free of this inconsistency if the assumptions underlying the estimation are 110 

not fully satisfied. For instance, by fitting a fractional ARIMA to the ECS02 record we 111 

obtained H > 1– but a check of the model residuals allowed us to detect that the model 112 

did not provide a good fit. 113 

 The aggregated standard deviation (ASD) method gives perhaps the most convenient 114 

formalism (and closest to the ideal one) because it does not involve any other concept 115 

except standard deviation and thus it enables easy understandability and convenient sta-116 

tistical description. Let Xi be the process of interest on discrete time i (referring to years 117 

in our case) with (true – or population) standard deviation σ and let  118 

 X(k)
i  := (Xi + … + Xi – k +1)/k (1) 119 

denote the aggregate (average) process at time scale k, with (true) standard deviation σ(k) 120 

(the notation implies that X(1)
i  ≡ Xi). For sufficiently large k, X(k)

i  represents the climatic 121 

process; typically, the convention k = 30 is used to standardize the climatic time scale 122 

(number of years). Now, LTP is expressed by the elementary scaling property  123 

 σ(k) = 
σ

k1 – H  (2) 124 

This simple equation: (a) can support a definition of LTP; (b) can support a definition of 125 

the simple scaling stochastic (SSS) process (also known as stationary intervals of a self 126 

similar process); and (c) suffices to estimate H using sample estimates of σ(k) at several 127 

scales k. (2) implies that the autocorrelation ρ(k)
j  for scale k and lag j (defined as ρ(k)

j128 

 := Cov[X(k)
i , X(k)

i + k j] / Var[X(k)
i ]) is independent of scale (e.g. Koutsoyiannis, 2002): 129 

 ρ(k)
j  = ρj = (1/2) [(|j + 1|)2H + (|j – 1|)2H ] – |j|2H (3) 130 
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More precisely, LTP is defined as an asymptotic property for large scales, in which case 131 

(2) should be replaced by σ(k) = σ(l) /(k/l)1 – H for k/l > 1 and l → ∞; also SSS is more 132 

precisely defined in terms of scaling properties of the distribution function. 133 

 For comparison, in the simplest STP model, which is the Markovian or autoregressive 134 

model of order 1 (AR(1)), (2) and (3) become respectively (e.g. Koutsoyiannis, 2002):  135 

 σ(k) = 
σ
k
 

(1 – ρ2) – 2ρ (1 – ρk) / k
(1 – ρ)2  (4)  136 

 ρ
(k)
1  = 

ρ (1 – ρk)
2

k (1 – ρ2) – 2ρ (1 – ρk),     ρ
(k)
j  = ρ

(k)
1  ρ

k (j – 1)
 ,   j ≥ 1 (5) 137 

where ρ ≡ ρ(1)
1 . These indicate that (a) for large k, σ(k) ~ σ/ k; (b) ρ

(k)
j  is a decreasing func-138 

tion of k; and (c) only at scale k = 1 is the process Markovian (i.e., ρj = ρ j). 139 

 Obviously, the different formalisms in LTP imply different estimates of H. This is 140 

demonstrated in Table 1 for the seven time series and for three formalisms: the DFA as 141 

derived by Rybski et al. (2006), the R/S and the ASD method. In the latter we used an 142 

algorithm by Koutsoyiannis (2003), which by construction ensures consistency (H < 1); 143 

it can be observed that the other methods resulted in some inconsistent (> 1) values. 144 

Generally, all methods result in very high H but the specific values obtained by the dif-145 

ferent methods differ.  146 

Statistical uncertainty 147 

 Some believe that the distinction between STP and LTP is a pointless disputation. 148 

However, we will show in what follows that LTP implies relevant practical upshots, re-149 

lated to high variability and uncertainty on the long term. We discuss here several aspects 150 

of uncertainty which perhaps the most common formalisms (R/S and DFA) obscure.  151 

 Given a sample X1, …, Xn of size n and observations x1, …, xn, clearly X(n)
1  is the stan-152 

dard estimator of the mean µ of the process (most typically denoted as X
 –

) and x(n)
1  is the 153 

estimate of µ. The standard deviation StD[X
 –

] ≡ StD[X(n)
1 ] is a convenient indicator of 154 

uncertainty, and according to the scaling property (2), StD[X
 –

] = σ(n) = σ/n1 – H. If we com-155 
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pare it to the classical statistical law StD[X
 –

] = σ/ k (also valid asymptotically for STP 156 

processes as shown above), the differences are dramatic as H grows away from 0.5. To 157 

demonstrate it, for a series of length n with SSS we can calculate the “equivalent” sample 158 

size n΄ in the classical statistics sense, so that σ/n1 – H = σ/n΄0.5. Clearly,  159 

 n΄ = n2(1 – H) (6) 160 

As shown in Table 1, the equivalent sample sizes resulting by this equation for the seven 161 

time series are as low as 2-5. For instance in SSS, the longest data set, with size 1979, is 162 

equivalent to a classical statistical (IID) sample of size ~3! This emphasizes the fact that 163 

a record with length of 1979 years, which certainly would be called a long record having 164 

in mind classical statistics, is a very short record in the SSS framework. Only this exam-165 

ple suffices to demonstrate that the Hurst behavior has astonishing effects in the founda-166 

tion of climatology and hydrologic statistics and that the edifices have to be rebuilt on 167 

more solid grounds, provided that the LTP hypothesis is correct.  168 

 Even the STP Markovian model implies reduction of sample size; in this case using 169 

(4) and a similar logic, we obtain that 170 

 n΄ = n (1 – ρ)2

(1 – ρ2) – 2ρ (1 – ρn) / n (7) 171 

Values estimated from (7) are also given in Table 1 and show that the reduction is not as 172 

dramatic as in the SSS case. 173 

 However, the implications are perhaps even worse than described above as the analy-174 

sis was based on the assumption that H is known a priori. In reality, H is typically esti-175 

mated from the data, so there is additional sampling uncertainty (statistical estimation 176 

error). The sampling uncertainty applies also to all other statistics and we can anticipate 177 

that all confidence zones are wider than in classical statistics, as will be discussed below.  178 

 One may argue that the concept of “equivalent sample size”, as exposed above, 179 

applies only to the uncertainty of the mean and that the uncertainty for other statistical 180 

quantities, including H, might be lower. This, however, is not the case. In fact, LTP is in 181 
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fact an asymptotical property of the process (which should be detected on the tail, i.e. on 182 

the largest scales) and therefore the detection of LTP is highly uncertain when dealing 183 

with time series with short length (Taqqu et al., 1995).  184 

 This point has been already done in some studies. For example Koutsoyiannis (2002) 185 

showed that the sum of three Markovian processes is virtually indistinguishable from a 186 

process with LTP for lags as high as of the order of 1000. Also, Maraun et al. (2004) 187 

argued using DFA that LTP cannot not be concluded unambiguously from typical 188 

samples. To demonstrate this point further, we fitted to the ECS02 series (for which 189 

Rybski et al., 2006, gave the highest H) an autoregressive moving average (ARMA) 190 

linear process of order (1, 1) (another classical example with STP). The resulting 191 

coefficients of the process are φ = 0.95 (the autoregressive coefficient) and θ = 0.4 (the 192 

moving average coefficient). Based on the series of residuals in this process, one can 193 

easily conclude that the autocorrelation function is not distinguishable from white noise 194 

and that the Hurst coefficient is around 0.50; this means that the series is consistent with 195 

the ARMA(1, 1) model, i.e. exhibits STP. Besides we generated with this process a 196 

synthetic series with sample size 2000, and all estimation methods we tried gave 197 

incorrect values of H in the order 0.79-0.93. Continuing this experiment, we also found 198 

that we need a series with length of about 20 000 to correctly estimate H, viz. to find a 199 

value around 0.50. These examples clearly point out even the distinction between the 200 

extreme cases H = 0.5 and H → 1 is not statistically decidable with typical sample sizes. 201 

Observation uncertainty  202 

 It is well known that observations of hydrometeorological processes involve several 203 

inaccuracies; this is particularly true for spatially integrated quantities, which come from 204 

point measurements whose number and locations differ through history. So, even in the 205 

“instrumental” CRU series, some observation uncertainty exists. But in the very case of 206 

proxy data, there is an extra source of high uncertainty because the data are not instru-207 
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mental. In fact, all six proxy series are supposed to represent exactly the same process, 208 

the evolution of the northern hemisphere temperature. The different values assigned for 209 

the same year in the different series manifest none other than the uncertainty in recon-210 

struction of the past climate. Interestingly, two of the series (MBH99 and MM03) are 211 

based on the same original data but they have significant differences due to different 212 

approaches of reconstruction (see discussions by McIntyre and McKitrick, 2003, 2005, 213 

and Schmidt and Amman, 2005). In addition, we must have in mind that dendroclimatol-214 

ogy, on which the given proxy series are primarily based, cannot give accurate and 215 

objective values. For example, the subjectivity of the method (due to selection of tree 216 

samples that correlate well with temperature records and disregarding of others that do 217 

not correlate well) is expressed by Esper et al. (2003), when they say “The ability to pick 218 

and choose which samples to use is an advantage unique to dendroclimatology. That said 219 

it begs the question, how low can we go?”. (For a commentary on this see McIntyre, 220 

2005, and for a related parody see Stockwell, 2006b).  221 

 Thus, an approach isolating the series and examining each one separately, as done in 222 

Rybski et al. (2006), may not be consistent. Perhaps an approach that would combine the 223 

different series as an ensemble in an uncertainty framework (e.g. in a manner similar as 224 

in Monte Carlo simulations), which should also combine the instrumental series and 225 

include sampling uncertainty, is worth trying. But even if we fail to assemble such an 226 

approach, certainly we should identify and exploit the useful information contained on 227 

the proxy series. The most important information is that all series are consistent with the 228 

LTP hypothesis, even if we do not include in the analyses the years of instrumental 229 

observations (which one may argue that are already affected by global warming). This 230 

allows avoiding a circular logic, in which detection of a change would be based on data 231 

which were already used to infer the model. This remedy is none other than the splitting 232 

technique described by von Storch (1995) and also applied for JBBT98 by Koutsoyiannis 233 

(2003). To make this clearer, we redid all analyses for the period 1400-1855, which is the 234 
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common period of all proxy series prior to the period of instrumental records. The 235 

results, shown in Table 1, indicate that the H values obtained for this period are virtually 236 

identical to those for the complete data set and close to each other, averaging to 0.91, a 237 

value close that of CRU (0.93). On the other hand, the standard deviations, even though 238 

they do not depart significantly from the values of the whole period of each sample, are 239 

very different to each other (ranging in 0.09-0.21oC vs. 0.27oC of the CRU series).  240 

 It is interesting to compare the above range of values of the proxy series with the sam-241 

pling uncertainty of the standard deviation of the CRU series. Combining known results 242 

(Matalas, 1967; Salas, 1993, p. 19.11; Beran, 1994, p. 156; Koutsoyiannis, 2003), it is 243 

observed that the standard estimator S of the standard deviation σ is not unbiased and that 244 

an approximately unbiased estimator for both the LTP and STP cases is 245 

 S
≈

 := 
n΄

n΄ – 1 S (8) 246 

This assumes that n (the actual sample size) is large enough (for a more accurate expres-247 

sion for small n see Koutsoyiannis, 2003). Obviously, in the SSS case the estimate s≈ may 248 

differ dramatically from the standard estimate s (notice the notational convenience of 249 

lower case letters for estimates, i.e. numerical values, and upper case ones for estimators, 250 

i.e. random variables). Also, combining results from Koutsoyiannis, 2003 (based on 251 

systematic Monte Carlo simulations) and using s≈ as an estimate of the true standard 252 

deviation σ, it can be obtained that in the SSS case 253 

 
StD[S

≈
]

s≈
 = 

StD[S
 
]

s 
 ≈ 

(0.1 n + 0.8)λ(H)

 2 (n – 1) , with λ(H) := 0.088 (4 H2 – 1)2 (9) 254 

where StD[.] := Var[.] denotes the standard deviation of a random variable. 255 

 Now using the statistics of the CRU series, it is computed that the estimate of StD[S] 256 

(which could be spelled out as “the estimate of the standard deviation of the standard 257 

estimator of standard deviation”!) is 0.033oC (vs. 0.015oC in classical statistics). Roughly 258 

speaking, this justifies a difference in standard deviation between the different series of 259 

about 0.08oC (at significance 1%; even though the distribution of StD[S] is not normal). 260 
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Consequently, from the values in Table 1, we can conclude that the series JBBT98 and 261 

MSHDK05 are “compatible” with CRU, whereas all other series are not compatible even 262 

in an SSS framework. Thus, if one accepts one of the other four series as representative 263 

of the past climate, one can readily conclude that the warming in the last years is not a 264 

result of natural dynamics; no additional statistical test is needed. This also explains why 265 

these series in Rybski et al. (2006) resulted in “earlier detection” (to use their 266 

terminology). Had a sample size of 456 years been used in the above calculations (for the 267 

period 1400-1855) the estimate of StD[S] would be 0.025oC and would justify a 268 

difference among standard deviations thereof of about 0.06oC. Consequently, from Table 269 

1 we can observe that two groups (one is JBBT98, MM03, MSHDK05 and the other one 270 

MBH99, B00, ECS02) are formed, each of which contain series compatible to each other 271 

but the two groups are incompatible to each other. This makes unrealistic the possibility 272 

to use all series simultaneously in a global statistical approach and highlights once again 273 

the uncertainty involved in the use of proxy series. 274 

Statistical testing for climatic changes 275 

 Cohn and Lins (2005) used as a test statistic the slope of a linear fit to the time series 276 

to test whether or not a climate variable has changed in a statistically significant sense, 277 

over the available observation period. Rybski et al. (2006) proposed essentially the 278 

statistic D(k)
i, l  := X(k)

i  – X(k)
i – l to test whether a or not a climate variable, defined on a time 279 

scale k, has changed in a statistically significant sense, over a period of l years (starting 280 

from year i). This is indeed an interesting statistic and we wish to discuss it further. 281 

Firstly, it does not depend on a fitted model (as e.g. a linear fitting to the data). Secondly, 282 

it is flexible and convenient as it allows choosing the climatic time scale k and the lag l/k 283 

(defined on scale k). Thirdly, and more importantly, it yields a simple, general (not 284 

dependent on the process), convenient and exact expression for the standard deviation of 285 

the test statistic, which can be readily obtained from (1): 286 
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 StD[D(k)
i, l ] = 2 σ(k) 1 – ρ(k)

l/k (10) 287 

This does not depend on the mean of the process and includes two multiplicative terms, 288 

the first (σ(k), computed by (2) or (4)) depending on the standard deviation and the 289 

autocorrelation structure of the process, and the second (computed by (3) or (5)) 290 

dependent merely on the autocorrelation structure. It can be noticed that Rybski et al. 291 

(2006) did not use this expression but instead they derived an approximate yet more 292 

complex expression (denoting StD[D(k)
i, l ] as σ(k, l)), which in addition involves explicitly 293 

the lag one autocorrelation of the process at scale 1.  294 

 The variation of the two terms with ρ for both the SSS and AR(1) processes is 295 

depicted in Figure 1(a) for the assumptions indicated in the caption. The two terms have 296 

opposing effects. The first term increases with ρ, faster in the SSS than in the AR(1) case. 297 

The second term is a decreasing function of ρ but in AR(1) in practice equals 1 unless ρ 298 

takes very high values (> 0.95). The combined effect of the two terms is demonstrated in 299 

Figure 1(b) for σ = 1. In the SSS case, for relatively low ρ or H, StD[D(k)
i, l ] is an 300 

increasing function of H but for ρ > ~0.70 it becomes a decreasing function tending to 301 

zero as ρ → 1 (because the second term dominates). More specifically, for high ρ 302 

StD[D(k)
i, l ] becomes smaller than in the case of the classical statistics (the value 303 

corresponding to ρ = 0). The situation is similar in the AR(1) case but StD[D(k)
i, l ] becomes 304 

decreasing function of ρ only for ρ > 0.95. Interestingly (and perhaps contrary to 305 

intuition), for ρ > ~0.75, StD[D(k)
i, l ] is larger in the AR(1) case than in the SSS case.  306 

 In all this demonstration it was assumed that both σ and ρ are known. In practice, 307 

however both are unknown estimated from the sample. The picture changes drastically in 308 

this case. To estimate StD[D(k)
i, l ], one may be tempted to use the standard estimate s of σ 309 

that is used in classical statistics (this perhaps has been done in Rybski et al., as there is 310 

no mention of an alternative method). However, as explained above (eqn. (8)), in SSS 311 

statistics, s is strongly biased and s≈ should be used instead; so, if s = 1 then, according to 312 
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(8) and (6), an approximately unbiased estimate of σ is [n2(1–H) / (n2(1–H) – 1)]1/2. It can be 313 

seen in Figure 1(b) that in this case StD[D(k)
i, l ] is an increasing function for virtually all 314 

domain of ρ. StD[D(k)
i, l ] estimated with SSS statistics is greater than that estimated by 315 

classical statistics for ρ > 0.3 and the difference becomes dramatic for ρ approaching 1. 316 

The situation is different in the AR(1) process where, as seen in Figure 1(b), the use of 317 

classical statistical estimate practically has no effect unless ρ > 0.95.  318 

 The effects of autocorrelation to the significance of rejecting the null hypothesis of no 319 

change in climate is demonstrated in Figure 1(c), assuming that a classical statistical test 320 

has already resulted in rejection of the null hypothesis with extremely low risk (i.e. 321 

significance level) 10–15. It is observed that the significance level increases significantly 322 

with ρ. For ρ = 0.7 the significance level becomes10–2 in the SSS case and 10–3 in the 323 

AR(1) case. For ρ > 0.8 both the SSS and the AR(1) processes give significance levels 324 

that are very close to each other; this may be interesting to those who do not trust the 325 

LTP hypothesis and prefer to assume an STP behaviour.  326 

 Yet this modified analysis was based on the tacit assumption that the true value of H is 327 

known. But since this assumption is not true, the above methodology does not form a 328 

formal test, so we call it a “pseudo-test” and anticipate that it only yields a lower bound 329 

of the significance level. For unknown H, the estimate of StD[D(k)
i, l ] is anticipated to be 330 

greater but its calculation may be intractable by analytical means (given that the estima-331 

tors of H and σ are dependent; Koutsoyiannis, 2003). This justifies why Cohn and Lins 332 

(2005) used a Monte Carlo testing framework, which resulted in even greater escalation 333 

of orders of magnitude of significance level. However, as explained above, the focus of 334 

this Letter is on understanding so we preferred the analytical discussion; in this respect, 335 

the construction of an exact Monte-Carlo test based on D(k)
i, l  is out of our current scope.  336 

The detection problem 337 

 The above discussion shows that the detection and attribution problem should be 338 
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studied in a framework admitting LTP, as also pointed out both by Cohn and Lins (2005) 339 

and Rybski et al. (2006), or at least a framework incorporating a high dependence 340 

structure, and that the classical IID framework should be abandoned. However, the whole 341 

problem may be more difficult than suggested in the latter work. Specifically, it requires 342 

more attention in avoiding classical statistical results that are not valid in an SSS 343 

framework (or even in processes with high autocorrelations), and an accurate description 344 

of all sources of uncertainty.  345 

 It may have some interest to apply the above “pseudo-test” to the CRU data series. 346 

The application is shown graphically in Figure 2, for a double sided test for significance 347 

level 10–2 and for the SSS case, using all possible integer lags l/k from 1 (l = 30) to 4 (l = 348 

120). In neither case the “pseudo-test” resulted in rejection of the null hypothesis (no 349 

change), although it comes close to rejection for 2005 for l/k = 3. As noted above, a real 350 

test would be even more tolerant in rejecting the null hypothesis. This result agrees with 351 

Cohn and Lins (2005) rather than with Rybski et al. (2006) who perhaps underestimated 352 

uncertainty bands, as discussed above.  353 

 Certainly, the detection and attribution problem will continue to be an attracting one in 354 

the years to come, as newer data will be accumulated. Before concrete conclusions can 355 

be drawn, a rigorous methodological framework should be built, in which SSS statistics 356 

should play a role. Obviously, the aim of this Letter was neither to provide such a 357 

framework nor to give an answer to the detection/attribution problem. We hope, 358 

however, that our remarks may be useful in building this framework as, no doubt, are 359 

both studies that motivated our Letter.  360 

 In our opinion the application of such a framework would give more reliable results 361 

on point and regional basis, rather than on global or “hemispheric” basis, thus avoiding 362 

the additional uncertainty resulting from integration over the globe. This is particularly 363 

the case for hydrological variables such as rainfall and runoff, for which the integration 364 

over the globe may not have any meaning. Obviously, the framework we are discussing 365 
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will also be applicable for those hydrological processes, given that they are also 366 

characterized by LTP.  367 

 The building of such a framework cannot be based on merely statistical arguments, 368 

because, as we demonstrated above, even the presence of LTP can be disputable on 369 

purely statistical grounds. The fact that the recently reconstructed proxy time series of 370 

climate are consistent with the hypothesis of LTP does not necessarily mean that the 371 

hypothesis is true. Thus, we believe that better understanding and theoretical arguments 372 

are strongly needed to illustrate and justify the hypothesis. In this respect, perhaps the 373 

concepts of multiple-scale fluctuation (Koutsoyiannis, 2002), which is an extension of 374 

the common single-scale fluctuation perception, and the application of the physical and 375 

mathematical principle of maximum entropy, viz. maximum uncertainty (Koutsoyiannis, 376 

2005) on a range of scales, may have some interest as they attempt to provide theoretical 377 

justification of LTP. Until a concrete framework can be established, we strongly endorse 378 

the following quotation by Cohn and Lins (2005): “From a practical standpoint, however, 379 

it may be preferable to acknowledge that the concept of statistical significance is 380 

meaningless when discussing poorly understood systems.”  381 
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Table 1 Comparisons of estimates of statistics for different methods and data sets.  444 

Data series CRU JBBT98 MBH99 B00 ECS02 MM03 MSHDK05

All data 

Sample size 150 992 981 994 1162 581 1979 

s, standard estimate 0.27 0.23 0.13 0.14 0.14 0.17 0.22 

H by DFA* 1.09 0.82 0.97 0.93 1.04 0.83 0.86 

H by R/S 1.07 0.90 0.89 0.89 0.93 0.97 0.92 

H by ASD 0.93 0.88 0.91 0.91 0.94 0.92 0.94 

ρ  0.84 0.53 0.65 0.64 0.81 0.66 0.91 

SSS 1.9 5.0 3.4 3.3 2.5 2.8 2.7 Equivalent  

sample size AR(1) 13.8 307.5 205.0 221.1 120.8 119.3 95.3 

Period 1400-1855 

Sample size  456 456 456 456 456 456 

s, standard estimate  0.20 0.10 0.13 0.09 0.16 0.21 

H by ASD  0.86 0.88 0.91 0.93 0.92 0.93 

ρ   0.54 0.62 0.59 0.77 0.65 0.88 

* Values given by Rybski et al. (2006) except in the CRU series. 445 
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Figure 1 Variation with ρ of (a) the two multiplicative terms comprising StD[D(k)

i, l ] 449 

assuming σ = 1, (b) StD[D(k)
i, l ] assuming σ = 1 or s = 1 as indicated, and (c) the implied 450 

significance in rejecting the null hypothesis assuming that s = 1 and that in classical IID 451 

statistics this significance level is 10–15; assumptions: k = 30, l/k = 3, n = 150. 452 
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 454 
Figure 2 Graphical depiction of the pseudo-test based on StD[D(k)

i, l ] with known H. The 455 

continuous solid curve represents the CRU time series averaged over climatic scale k = 456 

30. The series of points represent values of D(k)
i, l  for the indicated lags l/k. Horizontal lines 457 

represent the critical values of the pseudo-test, which are the estimates of StD[D(k)
i, l ] times 458 

a factor 2.58 corresponding to a double sided test with significance level 1% and 459 

assuming normality (only the positive critical values are plotted).  460 


