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Περίληψη 
 
 
Οι ανανεώσιμες πηγές ενέργειας προσφέρουν λύση σε περιπτώσεις νησιών 
τα οποία προσπαθούν να είναι ενεργειακά αυτόνομα, ωστόσο η στοχαστική 
φύση των καιρικών φαινομένων δημιουργεί προκλήσεις για την αξιόπιστη 
ποσοτικοποίηση των ανανεώσιμων πηγών ενέργειας. Η εργασία εστιάζεται 
στην περίπτωση του νησιού της Αστυπάλαιας το οποίο βρίσκεται στο Αιγαίο 
πέλαγος ενώ αναδεικνύεται η σημασία της στοχαστικής προσομοίωσης για 
την ποσοτικοποίηση των ανανεώσιμων πηγών ενέργειας. Η Αστυπάλαια, 
όπως και πολλά νησιά, είναι εξαρτημένα από τα εισαγόμενα ορυκτά καύσιμα. 
Η παρούσα εργασία πραγματεύεται αυτά τα ζητήματα εφαρμόζοντας ένα 
μοντέλο στοχαστικής προσομοίωσης που αναπτύχθηκε από (Koutsoyiannis, 
2021, 2000) και επεκτάθηκε από (Dimitriadis and Koutsoyiannis, 2018) σε 
διαφορετικά είδη δεδομένων, όπως ταχύτητα ανέμου, ηλιακή ακτινοβολία 
και ύψος κύματος τα οποία αντιστοιχούν στο νησί της Αστυπάλαιας. Στην 
εργασία χρησιμοποιήθηκε το μοντέλο Συμμετρικού Κινούμενου Μέσου σε 
συνδυασμό με ανέλιξη Hurst-Kolmogorov που περιγράφεται από το 
κλιμακόγραμμα της, ενώ η προσέγγιση αυτή μπορεί να αναπαράγει τη 
βραχυπρόθεσμη και τη μακροπρόθεσμη εμμονή των δεδομένων. Tο μοντέλο 
μπορεί να διατηρεί τις στατιστικές ροπές της διαδικασίας και όπως 
αποδείχθηκε μέσω της διατήρησης του συντελεστή κύρτωσης να 
προσομοιώνει τις διακοπτόμενες διεργασίες. Τα αποτελέσματα αυτά 
μπορούν να βοηθήσουν στην διαδικασία λήψης αποφάσεων και να 
καθοδηγήσουν στη βέλτιστη χρήση ανανεώσιμων πηγών ενέργειας. 
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Abstract 
 
 
Renewable energy offers solution for island communities who try to be energy 
independent, yet the stochastic nature of weather phenomena creates 
challenges for reliable energy generation. The significance of stochastic 
simulation in renewable energy planning for islands is highlighted, focusing in 
the case study of Astypalea island in the Aegean Sea. Astypalea, like many 
islands, faces energy insecurities due to its reliance on imported fossil fuels. 
This thesis addresses this issue implementing a stochastic simulation model 
developed by (Koutsoyiannis, 2021, 2000) and (Dimitriadis and Koutsoyiannis, 
2018) in various types of datasets, such as, wind, solar irradiance, wave height 
and period  corresponding to the island of Astypalea. In this thesis the 
Symmetric Moving Average scheme was used for the generation of the 
simulated values combined with Hurst-Kolmogorov process described by its 
climacogram. The extended Symmetric Moving Average Model as will be 
introduced can preserve high order moments of a process and as proved by 
preserving the coefficient of kurtosis can capture the intermittency of 
hydrometeorological processes. With this methodology we can expect insights 
for optimizing renewable energy systems in island contexts, ensuring 
sustainable and reliable energy generation. 
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1. Introduction 
 

In a period marked by increasing environmental concerns and the urgent 
need for sustainable energy solutions, the role of renewable energy resources 
has become paramount. However for island communities achieving energy 
independence presents some challenges due to their geographical isolation, 
limited resources and limited land cover. In this context, stochastic simulation 
of hydrometeorological data emerges as a tool for assessing and optimizing 
renewable energy systems, creating a path for autonomous and resilient energy 
solutions. Renewable energy resources, such as wind, solar and wave power 
hold particular promise for island communities due to their abundance and 
sustainability. Unlike finite fossil fuel reserves, renewable resources are 
inexhaustible and can be harnessed locally, reducing the need for costly 
imports and strengthening local economies. 

Moreover, advancements in renewable energy technologies, coupled 
with declining costs, have made it increasingly feasible for islands to pursue 
autonomous energy solutions tailored to their needs and conditions. Situated 
in the southern Aegean Sea, the island of Astypalea is a representation of the 
challenges and opportunities for energy independence. With a population of 
approximately 1300 inhabitants spread across an area of 97 𝑘𝑚2, Astypalea 
relies on diesel generators for electricity generation resulting in high energy 
costs. However the islands location and favorable climatic conditions make it 
an ideal candidate for renewable energy deployment, offering opportunities for 
wind, solar and wave energy harvesting. With the theory of stochastic 
simulation we try to quantify the uncertainty associated with the renewable 
energy resources to ensure reliability and efficiency. Stochastic simulation 
involves generating synthetic time series of meteorological variables based on 
statistical models derived from historical data. It also provides valuable 
insights into the temporal and spatial variability of energy generation 
supporting effective grid management.  

We implement a stochastic simulation model developed by 
(Koutsoyiannis, 2021, 2000) and extended by (Dimitriadis and Koutsoyiannis, 
2018) for three different dataset types, wind speed, solar irradiance, wave 
height and period of Astypalea’s island. The aim of this project is to introduce 
and apply a methodology (Dimitriadis and Koutsoyiannis, 2018; Koutsoyiannis, 
2000) that can preserve any arbitrary second order structure, as well as the high 
order moments of a process. With that said we can produce synthetic datasets 
from historic time series, having the same dependence structure and 
approximately having the same first four central moments, meaning, we 
approximate the distribution of the data to a desired degree which is sufficient 
for our applications.  

These processes are governed by Hurst-Kolmogorov dynamics 
(Koutsoyiannis, 2016) and are described by their climacogram, which is, the 
variance of the averaged process versus its scale. The climacogram of an HK 
process is described by: 
 



1 Introduction  

2 

 

𝛾(𝑘) =
𝛾(𝐷)

𝜅2−2𝛨
 

 
Where 𝛾(𝑘) is the variance of the process at time scale 𝑘, 𝛾(𝐷) is the variance 
at the unit time scale, 𝐻 is the Hurst parameter and 𝜅 = 𝑘/𝐷 is the discrete time 
scale. For the generation of the synthetic time series we use the Symmetric 
Moving Average scheme developed by (Koutsoyiannis, 2000) described by:  
 

𝑋𝑖 = ∑ 𝑎|𝑗|𝑉𝑖+𝑗

𝑙

𝑗=−𝑙

 

 
where 𝑎𝑗 are coefficients which can by calculated analytically and 𝑣𝑖 is white 

noise error terms.  (Koutsoyiannis, 2000) showed that the SMA scheme can 
preserve the first three central moments, while (Dimitriadis and Koutsoyiannis, 
2018) extended this method to the fourth central moment and found that it was 
sufficient for various distributions used in geophysical processes. 
In chapter 2 we present the theoretical background needed for the study of 
stochastic hydrology e.g. probability theory, random variables, moments of 
distribution, stochastic processes, statistics of stochastic processes, time 
series methods and spectral analysis of time series.  
In chapter 3 we present the theory of the methodology which was used, 
including the Symmetric Moving Average scheme, the Hurst-Kolmogorov 
process, the climacogram, its advantages and its variations and the extension 
of the Symmetric Moving Average scheme to the fourth moment. 
In chapter 4 we talk about the case study, the island of Astypalea, we present 
how various types of renewable energy resources can be harvested and we 
present the climacograms and the statistical characteristics of the historical 
and synthetic time series. 
In chapter 5 we point all the conclusions from the statistical comparison of the 
historical with the simulated time series. 
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2. Theoretical Background 
 
 

2.1 Hurst Phenomenon 
 

In the 1950s while H.E. Hurst was trying to solve an engineering problem 
concerning the design capacity of reservoirs (Hurst, 1951) (e.g. the storage 
required on a stream to give a minimum discharge), using statistics, probability 
theory and long period time series of natural events, observed a statistical 
property that describes the behavior of time series, that is, the tendency in 
natural phenomena, to occur clustering of high or low values which was later 
called Hurst Phenomenon. Hurst found that in natural events, groups of high or 
low values occur more often than random events, while investigating a time 
series of discharge of the Nile river and noticed that there are discharge 
“stretches” when there is a flood event or a drought period. This work was 
based on range analysis and various time series, like river flows, precipitation, 
lake levels, temperatures, growth of tree rings and sunspot numbers. Given a 
discharge time series and by calculating the accumulated mean and the 
accumulated departures from the mean, we can find the adjusted range 𝑅𝑛 
which is the highest and lowest of the accumulated totals. This is also the size 
of a reservoir, required to maintain the maximum possible steady discharge. 
Hurst’s goal was to establish a relationship between 𝑅𝑛, variability 𝑆𝑛 and the 
number of observations 𝑛 assuming that the observations are normally 

distributed. Hurst proved the relationship 
𝑅𝑛

𝑆𝑛
~𝑛𝐻 where 𝑅𝑛 is the adjusted 

range, 𝑆𝑛 is the standard deviation, 𝑛 is the size of the time series, 𝐻 is the Hurst 
coefficient and 𝑅𝑛/𝑆𝑛 is the rescaled range. He proceeded using probability 
theory and a coin tossing experiment and derived a theoretical relationship of 
a process with normal distribution with equation: 
 

 𝑅𝑛
𝜎
= 1.25𝑛0.5 

(2.1) 

   
After establishing Eq. (2.1), he focused on the available data and investigated 
the range on these time series. The longest period used was 2000 years, while 
there was not a period of less than 30 years. Hurst plotted each data group 
separately in a log-log plot and showed that log (𝑅/𝜎) is a linear function of 
log𝑁 and is expressed as: 
 

 
log

𝑅

𝜎
= 𝐾 log

𝛮

2
 𝑜𝑟 𝐾 =

log (𝑅/𝜎)

log (𝑁/2)
 

 

(2.2) 

Where 𝐾 is the slope of the different lines, which varied from 0.69 to 0.80 and 
the mean was 0.729. Hurst suggested for the case of a long series (several 
hundred years) the best practice was to take the mean value of 𝐾 while for 
shorter series take the mean value of 𝐾 from all available material. The general 
equation representing all the different lines is: 
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 𝑅𝑛
𝑆𝑛
= (

𝑁

2
)
𝐾

 
(2.3) 

It is worth noting that in the case of natural events where 𝐾 > 0.5 the term 
𝑅𝑛/𝑆𝑛 increases faster as the data size increases, rather than random events 
where 𝐾 = 0.5. 

The first mathematical description of this phenomenon first appeared in 
the work of (Mandelbrot and Van Ness, 1968) where Mandelbrot and Van Ness 
introduced Fractional Brownian Motion with equation: 

 𝐵𝐻(𝑡) − 𝐵𝐻(0)

=
1

𝛤(𝐻 + 0.5)
{∫ [(𝑡 − 𝑢)𝐻−0.5 − (−𝑢)𝐻−0.5]𝑑𝐵(𝑢)

0

−∞

+∫ (𝑡 − 𝑢)𝐻−0.5𝑑𝐵(𝑢)
𝑡

0

} 

 

(2.4) 

Where 𝐵𝐻(0) is the starting value, H is the Hurst parameter and 𝑑𝐵(𝑢) is white 
noise. It’s a gaussian process, self-similar, non stationary process whose 
increments are stationary 𝑋(𝑡) = 𝐵𝐻(𝑡 + 𝑠) − 𝐵𝐻(𝑠). The variance of the fBm is 
defined as: 
 

 𝐸[𝐵𝐻(𝑡 + 𝑇, 𝜔) − 𝐵𝐻(𝑡, 𝜔)]
2 = 𝑉𝑎𝑟[(𝐵𝐻(𝑇) − 𝐵𝐻(0)] = 𝑉𝐻𝑇

2𝐻 
 

(2.5) 

Where 𝑉𝐻 is the variance of the unit increments. However the process 𝐵𝐻(𝑡) is 
not differentiable and that led them to introduce Fractional Gaussian Noise by 
“smoothing” 𝐵𝐻 (making it differentiable everywhere, hence continuous) with 
equation: 

 
 

𝐵𝐻(𝑡, 𝛿) =
1

𝛿
∫ 𝐵𝐻(𝑠)𝑑𝑠
𝑡+𝛿

𝑡

 
(2.6) 

   
The autocovariance of the process is: 
 

 
𝐶𝐻(𝜏, 𝛿) =

1

2
𝑉𝐻𝛿

2𝐻−2 [(
|𝜏|

𝛿
+ 1)

2𝐻

− 2 |
𝜏

𝛿
|
2𝐻

+ |
|𝜏|

𝛿
− 1|

2𝐻

] 
(2.7) 

 
With finite variance:  
 

 𝐶𝐻(0, 𝛿) = 𝑉𝐻𝛿
2𝐻−2 

 

(2.8) 

For 0.5 < 𝐻 < 1 (the range of values of hydrologic time series), the covariance 
function does not converge which means: 
 

 
∫ 𝐶𝐻(𝜏, 𝛿)
∞

0

𝑑𝜏 = ∞ 

 

(2.9) 

In a series of computational experiments (Mandelbrot and Wallis, 1969a, 
1969b, 1969c), discrete fGn was introduced by using integer values of t:  
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 𝛥𝐵𝐻(𝑡) = [𝐵𝐻(𝑡)−𝐵𝐻(𝑡 − 1)] 
 

(2.10) 

The variance of the discrete process is:  
 

 𝑣𝑎𝑟[𝐵𝐻(𝑡 + 𝑛) − 𝐵𝐻(𝑡)] = 𝑣𝑎𝑟[𝐵𝐻(𝑛) − 𝐵𝐻(0) = 𝑛2𝐻𝑉𝐻 
 
 

(2.11) 

And the variance of the sample mean is of the form: 
 

 𝑣𝑎𝑟[𝑋] = 𝜎2𝑛2𝐻−2 (2.12) 

 
Lastly the autocovariance of the discrete fGn is: 
 

 
𝐶(𝜏, 𝐻) =

1

2
[|𝜏 + 1|2𝐻 − 2|𝜏|2𝐻 + |𝜏 − 1|2𝐻 

 

(2.13) 

(Koutsoyiannis, 2002) analyzed the basic properties of Hurst’s phenomenon 
and created three simple algorithms that could reproduce this effect. First he 
derived the equations characterizing the multiple scale properties of a typical 
stochastic process and found that a markovian process on aggregated time 
scale becomes more complicated than its basic scale and tends to white noise 
as the scale gets larger. He then showed that for any aggregated time scale 
fractional gaussian noise has an autocorrelation function: 
 

 
𝜌𝑗
(𝑘)
= 𝜌𝑗 (

1

2
) [(𝑗 + 1)2𝐻 + (𝑗 − 1)2𝐻] − 𝑗2𝐻 

(2.14) 

 
where 𝑘 is the aggregated time scale and for large j: 
 

 𝜌𝑗
(𝑘)
= 𝜌𝑗 = 𝐻(2𝐻 − 1)𝑗2𝐻−2 (2.15) 

 
This shows us that the autocovariance function of fGn in aggregated time 
scales is independent of the scale 𝑘 and its statistical properties compared 
with the aggregated markovian process are more effective, much simpler 
hence more parsimonious. Koutsoyiannis produced a multiple time scale 
fluctuation approach, a disaggregation approach and  a symmetric moving 
average approach, whereas , every approach could reproduce the desired 
effect. In a further paper (Koutsoyiannis, 2003) states that the classic 
hydrological statistics are not sufficient with the varying climate (following a 
simple scaling law), which is generally admitted, because the classical 
statistical estimators are based on samples consisting of independent and 
identically distributed variables which is not the case with hydrologic time 
series. Koutsoyiannis showed that the sample mean is an unbiased estimator 
but the variance is considerably higher than that of the classical statistics 
which results in differences in other statistics too. He also found that the 
quantiles of a distribution function are different than those of the classic 
statistics and when the Hurst coefficient and the standard deviation are 
unknown the confidence intervals are wider. Lastly he investigated the 
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estimation of the autocovariance and autocorrelation function and showed that 
the classical estimates are lower than the true values and after a small numbers 
of lags diminish, which is not the case for the simple scaling signal estimates 
which respect the long term persistence of the process and are identical with 
the theoretical ones. 
(Koutsoyiannis, 2006) discusses that the most common way to model a 
hydrological process is by non-stationary models and that long-term trends are 
deterministic components of the time series. He states that the best practice 
is to assume stationarity with a parallel scaling behavior which reproduces 
climatic trends. This approach also indicates that the uncertainty increases 
because of the large scale fluctuations. This method though can be difficult to 
adapt in cases where there is change in a physical system (e.g. change of land 
use) and in those cases should be combined with a deterministic hydrological 
model.  
 
 

2.2 Probability Concepts 
 
2.2.1 Random Variables and Distribution Functions 
 

In probability theory and statistics, a random variable 𝑥 is a function that 
maps outcomes of a random process (such as the result of a coin flip) to 
numerical values. There are two types of random variables, discrete and 
continuous. A discrete random variable is a random variable that can take on 
only a countable number of distinct values. The probability of each outcome is 
represented by a probability mass function (PMF), which gives the probability 
of each possible value of the discrete random variable. A continuous random 
variable can take on any value within a specified interval or range on the real 
number line, meaning that their possible values form a continuous range of 
numbers. The probability is represented by a probability density function (PDF), 
which gives the relative likelihood for the random variable to take on a value 
within a given interval. By that meaning, the PDF is used to calculate 
probabilities for ranges of values rather than specific values, as with discrete 
random variables. 
 In the case of discrete random variables, the cumulative distribution 
function (CDF), denoted by FX(x) is a function, which satisfies  
 

 𝐹𝑋(𝑥) =  𝑃[𝑋 ≤ 𝑥]  (2.16) 

 
with properties of being a monotone and nondecreasing function and that 
lim
𝑥→−∞

𝐹𝑋(𝑥) = 0 and lim
𝑥→+∞

𝐹𝑋(𝑥) = 1. The probability mass function is denoted 

by fX(x) and defined by  
 

 𝑓𝑋  =  𝑃[𝑥 = 𝑥𝑗] for x =  xj, j = 1,2, … , n (2.17) 

 

with properties that satisfy  𝑓(𝑥𝑗) > 0 for j=1,2,…,n and ∑𝑓(𝑥𝑗) = 1. 

 In continuous random variables the cumulative distribution function, 
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denoted by FX(x), satisfies  
 

 
𝐹𝑋(𝑥) =  ∫ 𝑓(𝑢)𝑑𝑢

𝑥

−∞

 
(2.18) 

 
while the probability density function is obtained by differentiating the CDF, that 
is 
 

 
 

𝑓𝑋(𝑥) =  
𝑑𝐹𝑋(𝑥)

𝑑𝑥
 

(2.19) 

 

with properties 𝑓𝑋(𝑥) > 0 and ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1. 

 
 
2.2.2 Expectations, Moments and Cumulants 
 
 A very important tool in problems of probability theory and statistics 
because of its ability to summarize specific properties of a random variable or 
a distribution function is the expected value 𝐸[𝑋]. Regardless of the type of the 
r.v. or the distribution, the expected value is an average of the values that a r.v. 
takes, while each value is weighted by a probability, or else it’s a measure of the 
center of gravity of the density function of the r.v. Values that are more probable 
receive more weight and vice versa. 

The expected value of a discrete random variable with probability mass 
function 𝑃𝑋(𝑥𝑖) = 𝑃[𝑋 = 𝑥𝑖] for i=1,…,n is defined by: 

 
 

𝐸[𝑋] =∑𝑥𝑖𝑃𝑋(𝑥𝑖)

𝑛

𝑖=1

 
(2.20) 

 
while, in the case of a continuous random variable with probability density 
function 𝑓𝑋(𝑥) the expected value is defined by: 

 
 

𝐸[𝑋] =  ∫ 𝑥𝑓𝑥(𝑥)𝑑𝑥
+∞

−∞

 
(2.21) 

 
 The moments or raw moments of a random variable are the expectations of 
the powers of the random variable, which describe certain quantitative 
measures related to the shape, the scale and the location of the distribution of 
the corresponding random variable.  
If 𝑋 is a random variable the 𝑟𝑡ℎ moment of 𝑋 or the raw moment of 𝑋 is: 
 

 
 𝜇𝑟

′ = 𝐸[𝑋𝑟] (2.22) 

 
 
The mean of the r.v. is the first raw moment: 
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 𝜇1
′ = 𝐸[𝑋] (2.23) 

 
 
The 𝑟𝑡ℎ central moment or moment about the mean of a random variable 𝑋 is: 
 

 
 𝜇𝑟 = 𝐸[(𝑋 − 𝜇𝑋)

𝑟] (2.24) 

 
 
One of the most frequent used central moments, is the central moment of order 
2 or 𝜇2, which gives a measure of dispersion of the pdf of the random variable, 
it is called variance and is defined as: 
 

 𝜇2 = 𝐸[(𝑋 − 𝜇𝑋)
2] = 𝜎2 = 𝑣𝑎𝑟[𝑋] (2.25) 

 
Finally, in applied statistics the 3𝑟𝑑 and 4𝑟𝑡ℎ central moments are used, which 
are part of high order moments, used to describe the skewness and the kurtosis 
respectively. Skewness is a measure of the asymmetry of the distribution 
(value of zero means that the pdf is symmetric) and kurtosis describes the 
“tailedness” of the pdf around the expected value. 

The cumulants of a random variable 𝑋 are used to describe the same 
measures as classical moments but in a different way. According to (Johnson 
et al., 2005), cumulants are useful because of their additivity properties, 
meaning that when we deal with the sum of multiple independent variables, the 
cumulants can be calculated by adding the sums of the individual cumulants. 
The logarithm of the moment generating function of 𝑋 is defined to be the 
cumulant generating function of 𝛸: 
 

 
 𝐾(𝑡) = 𝑙𝑛𝐸[𝑒𝑡𝑥] (2.26) 

 
 
The 𝑟𝑡ℎ cumulant of 𝑋 denoted by 𝜅𝑟 is defined by the power series expansion 
of the cumulant generating function: 

 
 

𝐾(𝑡) =∑𝜅𝑟
𝑡𝑟

𝑟!

∞

𝑟=1

 
(2.27) 

 
The following formulas (Smith, 1995) connect the raw moments 𝜇𝑟

′  to the 
cumulants: 
 

𝜇𝑟
′ =∑(

𝑟 − 1

𝑖
) 𝜅𝑟−1𝜇𝑟

′

𝑟−1

𝑖=0

 

 

𝜅𝑟 = 𝜇𝑟
′ −∑(

𝑟 − 1

𝑖
) 𝜅𝑟−1𝜇𝑟

′

𝑟−1

𝑖=0
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If we acquire a random sample of size n of 𝑋𝑖 random variables from a 

cumulative distribution function, then the order statistics(David and Nagaraja, 
2003) of the random samples 𝑋𝑖 , is defined to be the 𝑌𝑖 for i=1,…,n where 𝑌𝑖 are 
the rearranged 𝑋𝑖 in order of increasing magnitude. L-moments, introduced by 
(Hosking, 1990), is also an alternative way of describing  the statistical 
properties of data using linear combinations of order statistics.  
 
 

 𝜆1 = 𝐸[𝑋] (2.28) 

 
 

𝜆2 =
1

2
𝐸[𝑋(1:2) − 𝑋(2:2)] 

(2.29) 

 
 

𝜆3 =
1

3
𝐸[𝑋(1:3) − 2𝑋(2:3) + 𝑋(3:3)] 

(2.30) 

 
 

𝜆4 =
1

4
𝐸[𝑋(1:4) − 3𝑋(2:4)+3𝑋(3:4) − 𝑋(4:4)] 

(2.31) 

 
 

2.3 Stochastic Processes 
 
 A stochastic process is a collection of random variables, typically 
indexed by time or space, which describe how the values of these random 
variables change over time. Stochastic processes provide a way to study, 
analyze and make predictions about processes that evolve in an uncertain 
manner(Papoulis and Pillai, 2009). The random variables {𝑋(𝑡), 𝑡 ∈ 𝑇} are 
defined on a common probability space (𝛺, 𝐹, 𝑃), where 𝛺 is the sample space, 
which is the set of all possible outcomes, 𝐹 is a sigma algebra (σ-algebra) on 𝛺 
and 𝑃 is a probability measure on (𝛺, 𝐹), assigning probabilities to events. The 
index set 𝑇 is interpreted as time, but it can be any index set, typically a subset 
of the real numbers. For each t in 𝑇, 𝑋(𝑡) is a random variable defined on (𝛺, 𝐹) 
that assigns a real number to each outcome in 𝛺. The collection of random 
variables {𝑋(𝑡), 𝑡 ∈ 𝑇} is considered a stochastic process because it describes 
how the system’s state evolves over the index set 𝑇 in a probabilistic 
manner(Karlin and Taylor, 1975). 
 Like random variables, stochastic processes have two classifications 
based on the nature of the index set. Discrete stochastic processes, where the 
index set 𝑇 is a countable set, often consisting of integers and continuous 
stochastic processes, where the index set 𝑇 is a subset of the real numbers or 
an uncountable set. 
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Figure 2.1: Ensemble of sample realizations of a stochastic process. Source: 

(Stark et al., 2012) 
 
 

2.3.1 Statistics of Stochastic Processes 
 
 In this chapter we will present some statistical techniques and tools, 
which are used in the stochastic processes to model, analyze and make 
predictions with specific characteristics, who play an important role in 
understanding random phenomena. 
A random variable 𝑋(𝑡) for a specific 𝑡 has a distribution function:  
 

 
 𝐹(𝑥, 𝑡) = 𝑃{𝑥(𝑡) ≤ 𝑥} (2.32) 

 
 
which is the first order distribution function of the process. Its derivative with 
respect to x:  
 

 
𝑓(𝑥, 𝑡) =

𝜕𝐹(𝑥, 𝑡)

𝜕𝑥
 

(2.33) 

 
is the first order density function of the process. 
The second order distribution of the process 𝑋(𝑡) is the joint distribution:  
 

 
 𝐹(𝑥1, 𝑥2; 𝑡1, 𝑡2) = 𝑃{𝑋(𝑡1) ≤ 𝑥1, 𝑋(𝑡2) ≤ 𝑥2} (2.34) 

 
 
of the random variables 𝑋(𝑡1) and 𝑋(𝑡2) and the equivalent density function is: 
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𝑓(𝑥1, 𝑥2; 𝑡1, 𝑡2) =

𝜕2𝐹(𝑥1, 𝑥2; 𝑡1, 𝑡2)

𝜕𝑥1𝜕𝑥2
 

(2.35) 

 
 

 The complete distribution of a stochastic process refers to the entire 
probability distribution that describes the behavior of the process over its entire 
index set, which means it provides a comprehensive view of the random 
variables’ behavior at all time points. The 𝑛𝑡ℎ order distribution of the process 
𝑋(𝑡) is the 𝑛𝑡ℎ joint distribution:  

  
 

 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛) = 𝑃{𝑋(𝑡1) ≤ 𝑥1, 𝑋(𝑡2) ≤ 𝑥2, … , 𝑋(𝑡𝑛)
≤ 𝑥𝑛} 

(2.36) 

 
 
and the equivalent density function is: 

 
 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛) =
𝜕𝑛𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛)

𝜕𝑥1𝜕𝑥2, … , 𝜕𝑥𝑛
 

(2.37) 

 
2.3.2 Second-Order Properties of Stochastic Processes 
 
 The second-order properties of a stochastic process refer to the 
statistical characteristics that take account the moments of the random 
variables in the process, which are important for understanding the process’s 
variability and correlation between its values at different points in time. The 
mean 𝜇(𝑡) of 𝑋(𝑡) is the expected value of the random variable 𝑋(𝑡): 
 

 
 

𝜇(𝑡) = 𝐸[𝑋(𝑡)] = ∫ 𝑥𝑓(𝑥, 𝑡)𝑑𝑥
+∞

−∞

 
(2.38) 

 
The variance of the process is: 
 
 

 
𝛾0(𝑡) = 𝑣𝑎𝑟[𝑋(𝑡)] = ∫ (𝑥 − 𝜇(𝑡))2𝑓(𝑥, 𝑡)𝑑𝑥

+∞

−∞

 
(2.39) 

 
 

The autocovariance 𝑐(𝑡, ℎ) of 𝑋(𝑡) is the covariance of the random variables 
𝑋(𝑡) and 𝑋(𝑡 + ℎ): 
 

 𝑐(𝑡, ℎ) = 𝑐𝑜𝑣[(𝑋(𝑡), 𝑋(𝑡 + ℎ)]
= 𝐸[(𝑋(𝑡) − 𝜇(𝑡))(𝑋(𝑡 + ℎ) − 𝜇(𝑡 + ℎ))] 

(2.40) 

 
 
The autocorrelation 𝑟(𝑡, ℎ) of 𝑋(𝑡) is the correlation coefficient of the product 
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𝑋(𝑡)𝑋(𝑡 + ℎ): 
 

 
𝑟(𝑡, ℎ) = 𝑐𝑜𝑟𝑟[𝑋(𝑡), 𝑋(𝑡 + ℎ)] =

𝑐(𝑡, ℎ)

√𝛾0(𝑡)𝛾0(𝑡 + ℎ)
 

(2.41) 

 
 
The autocovariance function measures the covariance between values of a 
time series at different time points and it provides information about the 
strength and direction of the linear relationship between observations. 
Autocorrelation can take values between 1 < 𝑟(𝑡, ℎ) < 1.  While autocovariance 
measures the linear dependence between values at different time points, 
autocorrelation standardizes this measure providing a unitless values that is 
easier to interpret in terms of strength and direction of the relationship between 
the time series and its lagged version. Autocorrelation is essentially the 
normalized version of autocovariance(Papoulis and Pillai, 2009). 

 
 
2.3.3 Stationarity and Ergodicity 

 
 In this subsection we will introduce two important statistical concepts 
used in the field of stochastic processes and time series analysis, stationarity 
and ergodicity. A process is considered stationary if its statistical properties do 
not change over time. There are two main types of stationarity, strict-sense 
stationarity and wide-sense stationarity(Papoulis and Pillai, 2009). A process is 
strictly stationary if the distribution function remains the same over time or else 
the joint probability distribution of any set points within the process is invariant 
to shifts in time. From the above definition we conclude that: 
 
 

 𝑓(𝑥1, … , 𝑥𝑛; 𝑡1, … , 𝑡𝑛) = 𝑓(𝑥1, … , 𝑥𝑛; 𝑡1 + 𝑐,… , 𝑡𝑛 + 𝑐) (2.42) 

 
 
for any c. It follows that 𝑓(𝑥; 𝑡) = 𝑓(𝑥; 𝑡 + 𝑐) for any c and so the first order 
density of 𝑥(𝑡) is independent of t, 𝑓(𝑥; 𝑡) = 𝑓(𝑥). Wide-sense stationarity is a 
less restrictive form of stationarity that is also commonly used. A process is 
called wide-sense stationary of the mean of the process remains constant over 
time, that is 𝐸[𝑥(𝑡)] = 𝜇 and if its autocovariance function depends only on time 
differences 𝜏 = ℎ, 𝑐𝑜𝑣[𝑥(𝑡), 𝑥(𝑡 + ℎ)] = 𝑐(ℎ). 
A non-stationary process is characterized by changes in its statistical 
properties over time. This means that the mean, variance or other important 
characteristics of the process are not constant across different time periods. 
Non-stationary behavior often manifests as seasonality or other patterns that 
evolve over time(Koutsoyiannis, 2021). An example of a non-stationary process 
is a random walk, where each value in the series is determined by adding a 
random step to the previous value.  
 In stochastic processes ergodicity refers to the idea that the long-term 
statistical behavior of a system is representative of its average behavior over 
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time. Moreover ergodicity simplifies the analysis of stochastic processes by 
allowing statistical properties estimated from a long sample path to be 
representative of the ensemble behavior. In a more mathematical manner, a 
stochastic process is said to be ergodic if the time average of any function of 
the process converges to the expected value of that function. For continuous 
time process the equation that follows the above statement is: 
 
 

 
lim
𝑇→∞

1

𝑇
∫ 𝑔(𝑥(𝑡))𝑑𝑡 = 𝐸[𝑔(𝑥(𝑡))]
𝑇

𝑜

 
(2.43) 

 
 
and for discrete time process: 
 
 

 
lim
𝑇→∞

1

𝑇
∑𝑔(𝑥𝜏) = 𝐸[𝑔(𝑥(𝑡))]

𝑇

𝜏=0

 
(2.44) 

 
 
 
 

2.4 Time Series Analysis 
 
Time series analysis refers to statistical methods and models used to analyze, 
model and forecast time series. In this chapter we will refer to four basic time 
series models that have been used in hydrology, Autoregressive Models of 
order p, AR(p), Moving-Average Models of order q, MA(q), Autoregressive-
Moving-Average Models, ARMA(p,q) and the Autoregressive Integrated 
Moving-Average Model (ARIMA). These models are based on the idea of linear 
filter model, which relates a stochastic process with a series of independent 
white noise terms 𝑎𝑡 (Box et al., 2008). Mathematically this translates to: 

 
 

𝑥𝑡 = 𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯+ =∑𝜓𝑗𝑎𝑡−𝑗

∞

𝑗=0

= 𝜓(𝛣)𝑎𝑡 
(2.45) 

 
 

where: 𝑎𝑖 is the white noise error terms 
 𝜓1, 𝜓2… are the weights of the 𝑎𝑖 parameters   
 𝜓(𝛣) = 1 + 𝜓1𝐵 + 𝜓2𝐵

2 +⋯ is the transfer function of the filter. 
 𝐵 is a backward shift operator  
 𝑥𝑡 is the random variable normalized by subtracting the mean μ 
 
Shift operator is a tool which shifts the process, 𝑚 time units into the past or 
the future, either if we have a backward or forward shift operator respectively. 
In a mathematical manner the backward shift operator denoted by 𝐵 states that 
𝐵𝑚𝑍𝑡 = 𝑍𝑡−𝑚, where for 𝑚 = 1, 𝐵𝑍𝑡 = 𝑍𝑡−1. Following the same logic, the 
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forward shift operator is 𝐹𝑚𝑍𝑡 = 𝑍𝑡+𝑚. Lastly the backwards difference 
operator is defined as ∇𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡−1 = (1 − 𝐵)𝑍𝑡. The white noise process is 
formed by a series of uncorrelated random variables with zero mean 𝐸[𝑎𝑡] = 0 
and 𝑣𝑎𝑟[𝑎𝑡] = 𝜎𝑎

2. That is why the autocovariance function is of the form: 
 

 
𝛾𝑘 = 𝐸[𝑎𝑡𝑎𝑡+𝑘] = {

𝜎𝑎
2, 𝑘 = 0
0, 𝑘 ≠ 0

 
(2.46) 

 
 
and the autocorrelation function is 𝜌𝑘 = 1 𝑓𝑜𝑟 𝑘 = 0 and  𝜌𝑘 = 0 𝑓𝑜𝑟 𝑘 ≠ 0. 
Subject to some prerequisites (Koopmans, 1995), we can relate the variable 𝑥𝑡 
to past 𝑥𝑡−𝑗 variables and an error term: 

 
 

 
𝑥𝑡 = 𝜋1𝑥𝑡−1 + 𝜋2𝑥𝑡−2 +⋯+ 𝑎𝑡 =∑𝜋𝑗𝑥𝑡−𝑗

∞

𝑗=1

+ 𝑎𝑡 
(2.47) 

 
 
The transfer functions 𝜓(𝛣) and 𝜋(𝛣) are related by the equation 𝜓(𝛣)𝜋(𝛣) =
1. 
In order for the process to be stationary the sequence of the weights 𝜓  must 

converge ∑ |𝜓𝑗| < ∞∞
𝑗=0 , otherwise the filtered is not stable therefore the 

process is non stationary. If the 𝜋 weights in Eq. (2.47) follow the same rules 

as the 𝜓 weights, that is, ∑ |𝜋𝑗| < ∞∞
𝑗=0 , we say that the process is 

invertible(Brockwell and Davis, 2010). Alternatively, invertibility refers to a 
property of a model, which allows to alter its current form, to express the 
relationship between the current value of the time series and its past values. 
 
 
 
2.4.1 Autoregressive Models, AR(p) 
 
 In this family of models called Autoregressive Models of order p, AR(p), 
the equation that describes these models assumes that the current value of the 
process is expressed as a linear ensemble of previous values of the process 
and a random part. The relationship between the current observation and past 
observations weakens as you go further back in time, or else, the influence of 
distant past observations diminishes and recent observations have a stronger 
impact on the forecast. This is known as memory decay and for that reason 
these models are often used for short-term forecasting where recent 
observations are more relevant than those from a long time ago. The equation 
governing these characteristics is:  
 

 
 𝑥𝑡 = ɸ1𝑥𝑡−1 + ɸ2𝑥𝑡−2 +⋯+ ɸ𝑝𝑥𝑡−𝑝 + 𝑎𝑡  (2.48) 
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and it’s called autoregressive process of order p. 
The autocovariance function of AR(p) can be obtained by multiplying the 

whole equation by 𝑥𝑡−𝑘 and taking the expected values: 
 

𝑥𝑡 𝑥𝑡−𝑘 = 𝑥𝑡−k(ɸ1𝑥𝑡−1 + ɸ2𝑥𝑡−2 +⋯+ɸ𝑝𝑥𝑡−𝑝 + 𝑎𝑡) ⇒ 

 

𝐸[𝑥𝑡 𝑥𝑡−𝑘] = 𝐸[𝑥𝑡−𝑘(ɸ1𝑥𝑡−1 + ɸ2𝑥𝑡−2 +⋯+ɸ𝑝𝑥𝑡−𝑝 + 𝑎𝑡) ⇒ 

 
𝐸[𝑥𝑡 𝑥𝑡−𝑘] = 𝐸[𝑥𝑡−𝑘ɸ1𝑥𝑡−1 + 𝑥𝑡−𝑘ɸ2𝑥𝑡−2 +⋯+ 𝑥𝑡−𝑘ɸ𝑝𝑥𝑡−𝑝 + 𝑥𝑡−𝑘𝑎𝑡] ⇒ 

 
𝐸[𝑥𝑡 𝑥𝑡−𝑘] = 𝐸[𝑥𝑡−𝑘ɸ1𝑥𝑡−1] + 𝐸[𝑥𝑡−𝑘ɸ2𝑥𝑡−2] + ⋯+ E[𝑥𝑡−𝑘ɸ𝑝𝑥𝑡−𝑝] + 𝐸[𝑥𝑡−k𝑎𝑡] 

 
There is no relationship between variables 𝑥𝑡−𝑘 , 𝑎𝑡 and so 𝐸[𝑥𝑡−k𝑎𝑡] = 0. The 
autocovariance of AR(p) is: 
 

 
 𝛾𝑘 = ɸ1𝛾𝑘−1 + ɸ2𝛾𝑘−2 +⋯+ɸ𝑝𝛾𝑘−𝑝  (2.49) 

 
 
The autocorrelation function can easily be derived by dividing the process 
variance 𝑐0, which provides: 

 
 𝜌𝑘 = ɸ1𝜌𝑘−1 + ɸ2𝜌𝑘−2 +⋯+ɸ𝑝𝜌𝑘−𝑝 (2.50) 

 

 
Lastly the variance of the AR(p) process can be derived by the Eq. (2.49) for 
𝑘 = 0 and dividing by 𝜎𝑥

2 
 
𝛾𝑜 = ɸ1𝛾1 + ɸ2𝛾2 +⋯+ɸ𝑝𝛾𝑝 + 𝜎𝛼

2 ⇒ 

  
 

𝜎𝑥
2 =

𝜎𝛼
2

1 − ɸ1𝜌1 + ɸ2𝜌2 +⋯+ɸ𝑝𝜌𝑝
 

(2.51) 

 
 
Different forms of the autoregressive models have been used in stochastic 
hydrology, one of the most common is the AR(1) model. The equation of the 
AR(1) model is: 
 

 
 𝑥𝑡 = ɸ1𝑥𝑡−1 + 𝑎𝑡  (2.52) 

 
 
 

The autocovariance function of the AR(1) is: 
 
 

 𝛾𝑘 = ɸ
𝑘𝛾𝑘−1 (2.53) 
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the autocorrelation function is: 
 

 
 𝜌𝑘 = 𝜌1

𝑘 (2.54) 

 
 
and the process variance is: 
 

 
 

𝜎𝑥
2 =

𝜎𝛼
2

1 − ɸ1𝜌1
=

𝜎𝛼
2

1 − 𝜌1
2 

(2.55) 

 
 
Equation (2.52) can be written equivalently as (1 − ɸ1𝐵)𝑥𝑡 = 𝑎𝑡 = 𝜓−1(𝛣)𝑥𝑡 =

∑ ɸ1
𝑗
𝑎𝑡−𝑗

∞
𝑗=0 . This proves that the autoregressive models, given that the order of 

the model is finite, equals to an infinite moving average. For the process AR(1) 
to be stationary, parameter ɸ1 should be bounded so that |ɸ1| < 1. This proves 
that the root of (1 − ɸ1𝐵) which is ɸ1

−1, must lie outside of the unit circle. This 
can be generalized for an AR(p) process and the roots of the polynomial should 
also lie outside of the unit circle. 
 
 
 
2.4.2 Moving Average Models, MA(q) 
 
 The Moving Average Model MA(q) is a family of time series models that 
represent the relationship between an observation and a linear combination of 
the current white noise error and the past, q, white noise error terms. The 
parameter q, represents the order of the MA model and indicates the number 
of past white noise error terms considered in the model, meaning it determines 
how far back in time the model looks to capture dependencies. Like the AR(p) 
process, for stationarity, the roots of the polynomial must lie outside the unit 
circle. The equation of the Moving Average Model of order q, MA(q) is: 
 

 
 𝑥𝑡 = 𝑎𝑡 − 𝜃1𝛼𝑡−1 −⋯− 𝜃𝑝𝛼𝑡−𝑞 (2.56) 

 
 
Using the same approach as the AR(p) models, to obtain the autocovariance 
function of the model 𝛾𝑘 = 𝐸[𝑥𝑡𝑥𝑡−𝑘] 
 

 
 𝛾𝑘 = 𝐸[(𝑎𝑡 − 𝜃1𝛼𝑡−1 −⋯− 𝜃𝑝𝛼𝑡−𝑞)(𝑎𝑡−𝑘 − 𝜃1𝛼𝑡−𝑘−1 −⋯

− 𝜃𝑝𝛼𝑡−𝑘−𝑞)] 

(2.57) 

 
 
The autocovariance for 𝑘 > 0 is: 
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 𝛾𝑘 = (−𝜃𝑘 + 𝜃1𝜃𝑘+1 +⋯+ 𝜃𝑞−𝑘𝜃𝑞)𝜎𝑎
2 (2.58) 

 
 

The process variance for 𝑘 = 0 becomes: 
 

 
 𝛾0 = (1 + 𝜃1

2 + 𝜃2
2 +⋯+ 𝜃𝑞

2)𝜎𝑎
2 (2.59) 

 
 
Dividing the autocovariance function by 𝛾0 we get the autocorrelation function: 
 

 
 

𝜌𝑘 =
−𝜃𝑘 + 𝜃1𝜃𝑘+1 +⋯+ 𝜃𝑞−𝑘𝜃𝑞

1 + 𝜃1
2 + 𝜃2

2 +⋯+ 𝜃𝑞2
 

(2.60) 

 
 
One used Moving Average model is the first order moving average denoted by 
MA(1) and the equation is: 

 
 

 𝑥𝑡 = 𝑎𝑡 − 𝜃1𝛼𝑡−1 (2.61) 

 
 

The variance of the process is: 
 

 
 𝛾0 = (1 + 𝜃1

2)𝜎𝑎
2 (2.62) 

 
 

while the autocorrelation function is of the form:   
 

 
 

𝜌𝑘 =
−𝜃1

1 + 𝜃1
2  𝑓𝑜𝑟 𝑘 = 1 𝑎𝑛𝑑 0 𝑓𝑜𝑟 𝑘 ≥ 2 

(2.63) 

 
 
 

 
2.4.3 Autoregressive-Moving-Average Models, ARMA(p,q) 
 
 Autoregressive Moving-Average Models, ARMA(p,q), is a family of 
models, that combines the previous aforementioned two models, 
Autoregressive and Moving Average. By allowing the noise term in the AR(p) 
model to consist of a moving average of independent and identically distributed 
random variables we obtain the ARMA(p,q) model. The autoregressive part 
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captures the linear relationship between an observation and its past values, 
while the moving-average part models the relationship between an observation 
and past white noise error terms. The stationarity conditions are the same as 
with the AR(p) and MA(q) models, that is, the roots of the two polynomials must 
lie outside the unit circle. The general form of an ARMA(p,q) model is given by 
the equation: 
 

 
 𝑥𝑡 = ɸ1𝑥𝑡−1 +⋯+ɸ𝑝𝑥𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞 (2.64) 

 
 
where: 𝑥𝑡 is the value of the time series at time t 
 ɸ1, … , ɸ𝑝 are the autoregressive coefficients, 𝑝 is the order of the AR part 

 𝜃1, … , 𝜃𝑞 are the moving average coefficients, 𝑞 is the order of the MA 

part 
 𝑎𝑡 is the white noise error term at time t 
Equation (2.64) can also take the form: 

 

(1 − ɸ1𝐵 − ɸ2𝐵
2 −⋯−ɸ𝑝𝐵

𝑝)𝑥𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑝𝐵

𝑝)𝑎𝑡 ⇒ 

 
 

 ɸ(𝛣)𝑥𝑡 = 𝜃(𝐵)𝑎𝑡 (2.65) 

 
 

The autocovariance function is found the same way as the previous models, by 
multiplying and taking the expected value of the corresponding equation. 
 

𝛾𝑘 = 𝐸[𝑥𝑡𝑥𝑡−𝑘] = 𝐸[𝑥𝑡−𝑘(ɸ1𝑥𝑡−1 +⋯+ɸ𝑝𝑥𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯− 𝜃𝑞𝑎𝑡−𝑞)] ⇒ 

 
 𝛾𝑘 = ɸ1𝛾𝑘−1 +⋯+ɸ𝜌𝛾𝑘−𝜌 + 𝛾𝑥𝑎(𝑘) − 𝜃1𝛾𝑥𝑎(𝑘 − 1) − ⋯

− 𝜃𝑞𝛾𝑥𝑎(𝑘 − 𝑞) 

(2.66) 

 
 
In the above equation 𝛾𝑥𝑎(𝑘) = 𝐸[𝑥𝑡−𝑘𝑎𝑡] and 𝛾𝑥𝑎(𝑘 − 𝑞) = 𝐸[𝑥𝑡−𝑘𝑎𝑡−𝑞]. We can 

see from Eq. (2.66) that 𝑥𝑡−𝑘 depends only on white noise error terms up to 
time 𝑡 − 𝑘 and so for 𝑘 ≥ 0, 𝛾𝑥𝑎(𝑘) = 0 but for 𝑘 ≤ 0, 𝛾𝑥𝑎 has a value. With that 
said for 𝑘 ≤ 𝑞 the autocovariance function is Eq. (2.66) meaning the 
autocovariance of the ARMA(p,q) process depends on coefficients of the 
autoregressive as much as the coefficients of the moving average part and at 
the variance 𝜎𝑎

2. On the other hand, for 𝑘 > 0, the autocovariance function is:  
 
 

 𝛾𝑘 = ɸ1𝛾𝑘−1 + ɸ2𝛾𝑘−2 +⋯+ɸ𝜌𝛾𝑘−ρ (2.67) 

 
 
and the autocorrelation function: 
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 𝜌𝑘 = ɸ1𝜌𝑘−1 + ɸ2𝜌𝑘−2 +⋯+ɸ𝜌𝜌𝑘−ρ (2.68) 

 
 
reducing to exactly the same autocovariance and autocorrelation of AR(p) 
process. Finally the variance of an ARMA(p,q) process is defined by Eq. (2.67) 
for 𝑘 = 0. 
 
A model of the ARMA(p,q) family used in hydrology is the ARMA(1,1) (Salas et 
al., 1982; Salas and Obeysekera, 1982; Tao and Delleur, 1976) with equation: 
 

 
 𝑥𝑡 = ɸ1𝑥𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 (2.69) 

 
 
The ARMA(1,1) process is stationary if −1 < ɸ1 < 1 and invertible if −1 < 𝜃1 <
1. 
The autocovariance function is:  

 
 

𝛾0 =
1 + 𝜃1

2 − 2ɸ1𝜃1

1 − ɸ1
2 𝜎𝑎

2 
(2.70) 

 
 
 

 
𝛾1 =

(1 − ɸ1𝜃1)(ɸ1 − 𝜃1)

1 − ɸ1
2 𝜎𝑎

2 
(2.71) 

 
 
 

 𝛾𝑘 = ɸ1𝛾𝑘−1   𝑓𝑜𝑟 𝑘 ≥ 2 (2.72) 

 
 

 
The autocorrelation function is:  
 

 
 

𝜌1 =
(1 − ɸ1𝜃1)(ɸ1 − 𝜃1)

1 − 𝜃1
2 − 2ɸ1𝜃1

𝜎𝑎
2 

(2.73) 

 
 
 

 𝜌𝑘 = ɸ1𝜌𝑘−1   𝑓𝑜𝑟 𝑘 ≥ 2 (2.74) 
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2.4.4 Autoregressive Integrated Moving-Average Model, ARIMA 
 
The ARIMA(p,d,q) is a widely used model which consists of three main 
components, the autoregressive, the integrated and the moving average part. 
The autoregressive component represent the linear regression of the current 
value of the seiries on its past values, the moving average component 
represents the linear regression of the current value on past white noise terms, 
and I(integrated) component involves differencing the series to make it 
stationary. It is an extension of the ARMA model which can handle seasonal 
nonstationaries in the data. The model is denoted as ARIMA(p,d,q) where: 
 
 p: order of the autoregressive component 
 d: order of differentiation of the original data 
 q: order of the moving average component 
 
If we have datasets of scale less than a year then we will probably observe 
seasonal patterns which involve repeating cycles over fixed time intervals (e.g. 
monthly). We may also observe systematic increase or decrease in the mean 
of the time series over time. These cases can be handled by differencing the 
dataset until the dataset becomes stationary. The difference between 
observations is expressed as ∇𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1( ∇𝑑 where d is the 𝑑𝑡ℎ difference 
of the series). If the order of differencing is zero we get 
ARIMA(p,0,q)=ARMA(p,q), ARIMA(p,0,0)=AR(p) and ARIMA(0,0,q)=MA(q). We 
have seen that for an ARMA process if the roots of the polynomial lie outside 
of the unit circle the process is stationary. In contrary if the roots lie inside the 
unit circle the generated values follow an exponential curve. We will deal with 
the case that the roots lie on the unit circle. The mathematical form of ARIMA 
model is  
 
 

 𝜑(𝐵)𝑥𝑡 = ɸ(𝐵)∇𝑑𝑥𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 (2.75) 

 
 
where: ɸ(𝐵) = 1 − ɸ1𝐵 − ɸ2𝐵

2 −⋯−ɸ𝑝𝐵
𝑝 

 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑝𝐵

𝑝 

 
The operator 𝜑(𝐵) = ɸ(𝐵)∇𝑑 is the generalized nonstationary autoregressive 
operator, ɸ(𝐵) is the autoregressive operator which is assumed to be 
stationary so that the roots of ɸ(𝐵) lie outside the unit circle and 𝜃(𝐵) is the 
moving average operator with roots 𝜃(𝐵) = 0 outside of the unit circle so that 
it is invertible. The ARIMA(1,1,1) process which incorporates the autoregressive 
part, differencing and moving average is of the form ∇𝑥𝑡 − ɸ1∇𝑥𝑡−1 = 𝑎𝑡 −
𝜃1𝑎𝑡−1  ⇒ (1 − ɸ1𝐵)∇𝑥𝑡 = (1 − 𝜃1𝐵)𝑎𝑡  
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2.5 Spectral Analysis of Time Series 
 
2.5.1 Fourier Transform  

 
Fourier transform is a mathematical technique that transforms a 

function of time or space into a function of frequency. It decomposes a 
complex signal into its constituent frequencies, which is helpful in 
understanding and manipulating signals in various applications. It expresses a 
function as a continuous integral of trigonometric or exponential 
functions(Osgood, 2019). The imaginary unit is a component in expressing 

both sine and cosine functions in a unified way through Eule’s formula (𝑒𝑖𝜃 =

cos(𝜃) + 𝑖 sin(𝜃) and its reverse cos(𝜃) =
1

2
(𝑒𝑖𝜃 + 𝑒−𝑖𝜃), sin(𝜃) =

1

2𝑖
(𝑒𝑖𝜃 −

𝑒−𝑖𝜃)). The fourier transform of a non-periodic function 𝑓(𝑡) is defined as: 
 

 
𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜔𝑡𝑑𝑡

∞

−∞

 
(2.76) 

 
Transforming now 𝐹(𝜔) into 𝑓(𝑡) is the inverse fourier transform and is defined 
as: 

 
 

𝑓(𝑡) = ∫ 𝐹(𝜔)𝑒𝑖2𝜋𝜔𝑡𝑑𝑡

∞

−∞

 
(2.77) 

 
According to (Körner, 2004) there in not only one definition for the fourier 
transform and the different variations are summarized in the following 
equation:  
 

 
𝐹(𝜔) =

1

𝐴
∫ 𝑒𝑖𝐵𝜔𝑡𝑑𝑡

∞

−∞

 
(2.78) 

 

Where 𝐴 = √2𝜋, 𝛣 = ±1 
 𝛢 = 1, 𝛣 = ±2𝜋 
 𝛢 = 1, 𝛣 = ±1 
 
The fourier transform exists for certain classes of functions. The conditions for 
the existence of the fourier transform depend on the properties of the function 
being transformed. The function must be integrable over its entire domain and 

should be finite meaning ∫ 𝑓(𝑡)𝑑𝑡 < ∞
∞

−∞
 and the function 𝑓(𝑡) should be 

piecewise continuous. This means that it can have a finite number of 
discontinuities (Bracewell, 2000). For the case that function 𝑓(𝑡) is real-valued 
and even, meaning 𝑓(𝑡) = 𝑓(−𝑡) then 𝐹(𝜔) is also an even function and fourier 
transform simplifies to: 

 
 



2  Theoretical Background 

22 

 

 
𝐹(𝜔) = ∫ 𝑓(𝑡) cos(2𝜋𝜔𝑡) 𝑑𝑡 = 2∫ 𝑓(𝑡) cos(2𝜋𝜔𝑡) 𝑑𝑡

∞

0

∞

−∞

 
(2.79) 

 
 
and the inverse fourier transform is: 
 
 

 
𝑓(𝑡) = ∫ 𝐹(𝜔) cos(2𝜋𝜔𝑡) 𝑑𝜔 = 2∫ 𝐹(𝜔) cos(2𝜋𝜔𝑡) 𝑑𝜔

∞

0

∞

−∞

 
(2.80) 

 
 
For the case that function 𝑓(𝑡) is periodic with period 1, fourier transform for 
any non integer value of 𝜔, is set to zero. This is a case where ω takes only 𝑘 
integer values, 𝑡 is defined at (e.g. [−1/2, 1/2]) the fourier transform is: 
 

 

𝐹𝑘 = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝑘𝑡𝑑𝑡

1/2

−1/2

 

(2.81) 

 
 
the inverse transform becomes a summation: 
 

 
𝑓(𝑡) = ∑ 𝐹𝑘𝑒

𝑖2𝜋𝑘𝑡

∞

𝑘=−∞

 
(2.82) 

 
If 𝑓(𝑡) is an even function for the case of 𝑓(𝑡) being a periodic function of period 
1, the transformation simplifies to the Fourier cosine transform: 
 
 

 

𝐹𝑘 = ∫ 𝑓(𝑡) cos(2𝜋𝑘𝑡) 𝑑𝑡 = 2∫ 𝑓(𝑡) cos(2𝜋𝑘𝑡) 𝑑𝑡

1/2

0

1/2

−1/2

 

(2.83) 

 
 
and the inverse transform: 
 
 

 
𝑓(𝑡) = ∑ 𝐹𝑘 cos(2𝜋𝑘𝑡) = 𝐹0 + 2

∞

𝑘=−∞

∑cos (2𝜋𝑘𝑡)

∞

𝑘=1

 
(2.84) 
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2.5.2 Power Spectrum 
 
Generally, the power spectrum of a signal represents its frequency content. It 
provides insights into the distribution of power across different frequencies in 
the signal and it is useful for understanding the periodicities and dominant 
frequencies present in a time series.(Bloomfield, 2000) The power spectrum is 
derived from the Fourier cosine transform of the autocovariance function. For 
a stochastic process 𝑥𝜏 in discrete time, with autocovariance function 𝑐𝜂 =

𝐶𝑜𝑣[𝑥𝜏, 𝑥𝜏+𝜂], the inverse finite fourier transform of the autocovariance function 

is the power spectrum 𝑠(𝜔), 𝜔 ∈ [0, 1/2]. Autocovariance is an even function 
meaning 𝑐𝜂 = 𝑐−𝜂 

 
 

𝑠(𝜔) = 2 ∑ 𝑐𝜂 cos(2𝜋𝜂𝜔) = 2𝑐0 + 4∑𝑐𝜂 cos(2𝜋𝜂𝜔)

∞

𝜂=1

∞

𝜂=−∞

 
(2.85) 

 
 
And the inverse formula is: 

 
 

𝑐𝜂 = ∫ 𝑠(𝜔)cos (

1/2

0

2𝜋𝜂𝜔)𝑑𝜔 

(2.86) 

 
In the case where a time series is used to compute the power spectrum, 
according to classical estimates for the autocovariance the equation is: 
 

 

𝑐�̂� =
1

𝑛
∑(𝑥𝜏 − 𝑥)(𝑥𝜏+𝜂 − 𝑥)

𝑛−𝜂

𝜏=0

 

(2.87) 

 
And this proves that the power spectrum 𝑠(𝜔) is equivalent with the 
periodogram for each discrete frequency 𝜔 = 𝑘/𝑛 with 𝑘 being a positive 
integer ≤ 𝑛/2. Respectively we can use the autocorrelation 𝜌𝑘 rather than the 
autocovariance 𝑐𝜂 and the corresponding function is: 

 
 

𝑝(𝜔) = 2 [1 +∑𝜌𝑘cos (

∞

𝜂=1

2𝜋𝜂𝜔)] 

(2.88) 

 
 
is called the spectral density function and has the property: 
 

 
 
 ∫ 𝑝(𝜔)𝑑𝜔 = 1

1/2

0

 

 

(2.89) 
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2.6 Sample Statistics 
 
 Sample statistics are numerical measures that provide insights into the 
characteristics of a sample of data. A statistic is a function of observable 
random variables, which does not contain any unknown parameters. These 
statistics summarize and describe the main features of a dataset such as the 
mean, variability and distribution. Let 𝑋1,𝑋2,…,𝑋𝑛 be a random sample. The 𝑟𝑡ℎ 
sample moment about 0 denoted by 𝑀𝑟

′  is: 
 

 
𝑀𝑟
′ =

1

𝑛
∑𝑋𝑖

𝑟

𝑛

𝑖=1

 
(2.90) 

 
If 𝑟 = 1 we get the sample mean denoted by X̅, that is: 
 

 
X̅ =

1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

 

(2.91) 

 
The 𝑟𝑡ℎ sample moment about X denoted by 𝑀𝑟 is: 
 

 
𝑀𝑟 =

1

𝑛
∑(𝑋𝑖 − X̅)

𝑟

𝑛

𝑖=1

 
(2.92) 

 
The sample variance from a random sample 𝑋1,𝑋2,…,𝑋𝑛 is defined to be: 
 

 
𝑆2 =

1

𝑛 − 1
∑(𝑋𝑖 − X̅)

2

𝑛

𝑖=1

 

 

(2.93) 

The first sample moment is the sample mean, which is a function of the random 
variables 𝑋1,𝑋2,…,𝑋𝑛. If the random sample from a density 𝑓(∙) has a mean 𝜇 and 

finite variance 𝜎2 then: 
 

 𝐸[X̅] = 𝜇X̅ = 𝜇 (2.94) 

 
and  
 

 
𝑣𝑎𝑟[X̅] = 𝜎X̅

2 =
1

𝑛
𝜎2 

 

(2.95) 

Equation (2.94) tells us that on average X̅ the distribution of X̅ is centered about 
𝜇. Equation (2.95) says that the spread of the values of X̅ about 𝜇 is proportional 
with the sample size that is for small sample sizes the variance is larger than 
of that of a bigger sample size (e.g. the variance of a sample size of 50 is two 
times bigger than that of a sample size of 100). The larger the sample size, X̅ 
tends to be more concentrated around 𝜇. 
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For the autocovariance estimation there is a downward bias (Salas, 1980) and 
the typical estimator of the lag 𝜂 autocovariance is: 
 

 
𝑐𝜂 =

1

𝑛
∑(𝑥𝜏 − �̂�)(𝑥𝜏+𝜂 − �̂�

𝑛−𝜂

𝜏=1

) 

 

(2.96) 

All the above classical statistical estimates have been used in hydrologic time 
series as tools to approximate various statistical results through available data 
time series or to approximate various parameters of stochastic models. The 
above estimates however, are used in cases where the samples come from 
independent and identically distributed random variables, which is not the case 
for hydrologic processes which have a physical underlying mechanism. We will 
now focus on (Koutsoyiannis, 2003) paper, who revisited these terms and under 
a simple scaling stochastic process or simple scaling signal reconstructed the 
statistical estimates as to respect the Hurst effect. The hydrometeorological 
processes exhibit scale invariant properties at any scale greater than annual 
with equation(Koutsoyiannis, 2002): 
 

 
(𝑍𝑖

(𝑘) − 𝑘𝜇) = (
𝑘

𝑙
)
𝐻

(𝑍𝑗
(𝑙) − 𝑙𝜇) 

 

(2.97) 

The variance of the aggregated process for 𝑖 = 𝑗 = 𝑙 = 1 is: 
 

 𝛾0
(𝑘)
= 𝑣𝑎𝑟[𝑍𝑖

(𝑘)
] = 𝑘2𝐻𝛾0 

 

(2.98) 

 

Using equation (2.93) and observing X̅ = 𝑍1
(𝑛)
/𝑛 we get: 

 
 

𝑣𝑎𝑟[X̅] =
𝜎2

𝑛2−2𝐻
 

 

(2.99) 

In the case of 𝐻 = 0.5  we get the same equation as classical statistics, but in 
hydrologic time series where 𝐻 > 0.5 and for fixed 𝐻 the variance is 
dramatically higher which results which result in difference in other statistics 
too. The variance becomes: 
 

 
�̃�2 =

𝑛 − 1

𝑛 − 𝑛2𝐻−1
𝑆2 =

1

𝑛 − 𝑛2𝐻−1
∑(𝑋𝑖 − X̅)

2

𝑛

𝑖=1

 

 

(2.100) 

Τhe corresponding autocovariance is: 
 
 

�̃�𝜂 = 𝑐𝜂 +
1

𝑛2𝐻−2
�̃�2 = 𝑐𝜂 +

𝑛 − 1

𝑛3−2𝐻 − 𝑛
𝑆2 

 

(2.101) 

And the autocorrelation function is: 
 
 

�̃�𝜂 =
�̃�𝜂

�̃�2
= 𝜌𝜂 (1 −

1

𝑛2−2𝐻
) +

1

𝑛2−2𝐻
 

(2.102) 
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It is shown (Koutsoyiannis, 2003) that the classical autocorrelation is lower 
than the theoretical values and after a number of lags disappears, which 
doesn’t reflect the Hurst effect. Contradictory the new estimator is very close 
to the theoretical one and exhibits the long-term persistence of the process. 
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3. Methodology 
 
3.1 Symmetric Moving Average 
  
(Koutsoyiannis, 2000) developed and implemented a generating scheme for 
either single variable or multivariable simulation and forecast, which is either 
for short term or long- term memory processes and preserves the Hurst 
coefficient. This scheme incorporates short and long memory models. As 
aforementioned in Section (2.4) a stochastic process can be formed as an 
infinite summation of independent and identically distributed random variables 
𝑉𝑖 (white noise): 
 

 
𝑋𝑖 = ∑ 𝑎−𝑗𝑉𝑖+𝑗

0

𝑗=−∞

= ⋯+ 𝑎2𝑉𝑡−2 + 𝑎1𝑉𝑡−1 + 𝑎0𝑉𝑖 

 

(3.1) 

Where 𝑋𝑖 is the random variable at time 𝑖 and 𝑎𝑗 are coefficients which can be 

found from the sequence of the autocovariance 𝛾𝑖  (Box et al., 2008). 
 

 
∑𝑎𝑗𝑎𝑖+𝑗 = 𝛾𝑖

∞

𝑗=0

 
(3.2) 

 
This model is known as Moving Average or specifically Backward Moving 
Average model. In practice there is no need to define 𝑋𝑖 as an infinite 
summation rather than a limited summation because it is computationally 
impossible to produce infinite terms and from a certain point and beyond these 
terms can be neglected  because as 𝑗 → −∞ 𝑎−𝑗 decreases (Koutsoyiannis, 

2000). With that said (3.1) can be written as: 
 

 
𝑋𝑖 = ∑ 𝑎−𝑗𝑉𝑖+𝑗

0

𝑗=−𝑠

= 𝑎𝑠𝑉𝑖−𝑠 +⋯+ 𝑎2𝑉𝑖−2 + 𝑎1𝑉𝑖−1 + 𝑎0𝑉𝑖 

 

(3.3) 

 
And the sequence of the autocovariance: 
 

 
∑𝑎𝑗𝑎𝑖+𝑗 = 𝛾𝑖

𝑠−𝑖

𝑗=0

 

(3.4) 

 
The population of 𝑎𝑗  j=0, 1, 2,…,s coefficients depends on simulation length and 

the accuracy of the model and the decay rate of the autocovariance function 
(Koutsoyiannis, 2000). By generalizing (3.1) we can relate 𝑋𝑖 with previous and 
next white noise error terms 𝑉𝑖 and we conclude in a Backward-forward moving 
average scheme (Koutsoyiannis, 2000) described by: 
 



3  Methodology 

28 

 

 
𝑋𝑖 = ∑ 𝑎−𝑗𝑉𝑖+𝑗

∞

𝑗=−∞

= ⋯+ 𝑎−1𝑉𝑖−1 + 𝑎0𝑉𝑖 + 𝑎1𝑉𝑖+1 + 𝑎2𝑉𝑖+2 +⋯ 

 

(3.5) 

and the coefficients 𝑎𝑗 are found by: 

 
 

∑ 𝑎𝑗𝑎𝑖+𝑗 = 𝛾𝑖

∞

𝑗=−∞

 
(3.6) 

 
BFMA model (3.5) is a generalized form of the Backward Moving Average (3.1), 
which contains infinite possible solutions i.e. number of 𝑎𝑗 combinations 

satisfying (3.6). For the case that 𝑎𝑗 = 0 for 𝑗 < 0 BFMA deduces to BMA and 

for the case that 𝑎|𝑗| = 𝑎𝑗  ∀ 𝑗 > 0 we have the Symmetric Moving Average 

(SMA) (Koutsoyiannis, 2000) with equation: 
 

 
𝑋𝑡 = ∑ 𝑎|𝑗|𝑉𝑖+𝑗

∞

𝑗=−∞

= ⋯+ 𝑎2𝑉𝑖−2+ 𝑎1𝑉𝑖−1 + 𝑎0𝑉𝑖 + 𝑎1𝑉𝑖+1 + 𝑎2𝑉𝑖+2
+⋯ 

 

(3.7) 

And the coefficients 𝑎𝑗 are associated to 𝛾𝑖 with the equation: 

 
 

∑ 𝑎|𝑗|𝑎|𝑖+𝑗| = 𝛾𝑖

∞

𝑗=−∞

 

 

(3.8) 

With infinite white noise error terms and with limited parameters: 
 

 
𝑋𝑡 = ∑ 𝑎|𝑗|𝑉𝑖+𝑗

𝑠

𝑗=−𝑠

= 𝑎𝑠𝑉𝑖−𝑠 +⋯+ 𝑎1𝑉𝑖−1 + 𝑎0𝑉𝑖 + 𝑎1𝑉𝑖+1 +⋯
+ 𝑎𝑠𝑉𝑖+𝑠 

(3.9) 

 
and the coefficients 𝑎𝑗 are related to 𝛾𝑖 with equation: 

 
 

∑ 𝑎|𝑗|𝑎|𝑖+𝑗| = 𝛾𝑖

𝑠−𝑖

𝑗=−𝑠

 

(3.10) 

 
Despite the computation of the coefficients 𝑎𝑗 either in the BMA model or the 

SMA model, it is necessary to compute the statistical characteristics of the 
random variable 𝑉𝑖(Koutsoyiannis, 2000). Then we define the mean 𝜇𝑣 = 𝐸[𝑉𝑖], 
the variance of the random variable 𝑣𝑎𝑟[𝑉𝑖] = 1 and 𝜉𝑣 = 𝐸[(𝑉𝑖 − 𝜇𝑣)

3] which is 
the coefficient of skewness. Respectively the statistical characteristics of the 
random variable 𝑋𝑖 is the mean 𝜇𝑋 = 𝐸[𝑋𝑖], the variance of the random variable 
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𝑣𝑎𝑟[𝑋𝑖] = 𝛾0 and the skewness coefficient 𝜉𝑋 = 𝐸[(𝑋𝑖 − 𝜇𝑋)
3]. For the BMA 

model these parameters are related by:  
 

 

(∑𝑎𝑗

𝑠

𝑗=0

)𝜇𝑣 = 𝜇𝑋 

 

(3.11) 

 
 

(∑𝑎𝑗
3

𝑠

𝑗=0

)𝜉𝑣 = 𝜉𝑋𝛾0
3/2

 

 

(3.12) 

 
And for the symmetric moving average model the parameters are related by: 
 

 

(𝑎0 +∑𝑎𝑗

𝑠

𝑗=1

)𝜇𝑣 = 𝜇𝑋 

 

(3.13) 

 
 

(𝑎0
3 + 2∑𝑎𝑗

3

𝑠

𝑗=1

)𝜉𝑣 = 𝜉𝑋𝛾0
3/2

 

 

(3.14) 

 
The advantages of the SMA model over the BMA model according 
to(Koutsoyiannis, 2000) is that the SMA approach has a closed-form solution 
for determining 𝑎𝑗 coefficients in contrast with the BMA that has only numerical 

solutions. The coefficient of skewness of the white noise terms in the SMA 
model is lower than that of the BMA model which means it better preserves 
skewness. Also, the 𝑎𝑗 coefficients of the SMA model for large values of 𝑗 are 

smaller than those of the BMA model, tested in both Markovian and FGN 
process and because of that we can neglect 𝑎𝑗 coefficients of the SMA model 

for 𝑗 > 𝑠 (finite summation variant). 
The coefficients 𝑎𝑗 of the SMA model can be approximated using the power 

spectrum of the 𝑋𝑖 process. Let 𝑠𝛾(𝜔) denote the power spectrum of the 

process 𝑋𝑖 which is the discrete fourier transform of the autocovariance series 
𝛾𝑗 

 
 

𝑠𝛾(𝜔) = 2𝛾0 + 4∑𝛾𝑗 cos(2𝜋𝑗𝜔) =

∞

𝑗=1

2 ∑ 𝛾𝑗 cos(2𝜋𝑗𝜔)

∞

𝑗=−∞

 
(3.15) 

 
 
and the power spectrum of the 𝑎𝑗 coefficients: 
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𝑠𝑎(𝜔) = 2𝑎0 + 4∑𝑎𝑗 cos(2𝜋𝑗𝜔) =

∞

𝑗=1

2 ∑ 𝑎𝑗 cos(2𝜋𝑗𝜔)

∞

𝑗=−∞

 
(3.16) 

 
 
𝑠𝑎(𝜔) and 𝑠𝛾(𝜔) are related by: 

 
 

𝑠𝑎(𝜔) = √2𝑠𝛾(𝜔) 
(3.17) 

 
The solution of the 𝑎𝑗 coefficients can be found with the inverse transform 

 
 

𝑎𝑗 = ∫ 𝑠𝑎(𝜔) cos(2𝜋𝑗𝜔) 𝑑𝜔
1/2

0

 
(3.18) 

 
In the case of FGN process (Koutsoyiannis, 2002) the sequence of the 𝑎𝑗 

coefficients can be approximated using equation:  
 

𝑎0 =
√(2 − 2𝐻)𝛾0
1.5 − 𝐻

    𝑓𝑜𝑟 𝑗 = 0 
(3.19) 

 
And for 𝑗 > 0 
 

 𝑎𝑗 ≈
𝑎0
2
[(𝑗 + 1)𝐻+0.5 + (𝑗 − 1)𝐻+0.5 − 2𝑗𝐻+0.5] 

 

(3.20) 

 
3.2 Hurst-Kolmogorov process 
 
As aforementioned a stochastic process can be either continuous or discrete 
meaning that it either describes a system over a continuous time or at distinct 
points in time. The difference is that the underlying parameter, time in our case, 
takes values from a continuous set or from a discrete set respectively. In nature 
all the atmospheric and hydroclimatic processes are being evolved in 
continuous time so its logical we model them as continuous stochastic 
systems. First we will define some properties of stochastic processes of the 
cumulative process 𝑋(𝑡) and the discrete process 𝑥𝜏(Koutsoyiannis, 2021).  

 
 
The discrete time process 𝑥𝜏 is: 

 
 

 𝑥𝜏 =
1

𝐷
∫ 𝑥(𝑢)𝑑𝑢

𝜏𝐷

(𝜏−1)𝐷

 (3.21) 

 
where 𝐷 is the time step of the continuous time interval. The cumulative 
process 𝑋(𝑡) is: 
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𝑋(𝑡) =

1

𝐷
∫𝑥(𝑢)𝑑𝑢

𝑡

0

 (3.22) 

 
The discrete time process representation is: 
 

 

𝑥𝜏(𝐷) =
1

𝐷
∫ 𝑥(𝑢)𝑑𝑢

𝜏𝐷

(𝜏−1)𝐷

=
𝑋(𝜏𝐷) − 𝑋((𝜏 − 1)𝐷)

𝐷
 

 

(3.23) 

And the discrete time process representation at multiple time scales: 
 

 

𝑥𝜏
(𝜅) = 𝑥𝜏

(𝜅)
(𝜅𝐷) =

1

𝜅𝐷
∫ 𝑥(𝑢)𝑑𝑢

𝜏𝜅𝐷

(𝜏−1)𝜅𝐷

=
𝑋(𝜏𝜅𝐷) − 𝑋((𝜏 − 1)𝜅𝐷)

𝜅𝐷
 

 

(3.24) 

The observations of the hydroclimatic processes and the generation of 
synthetic time series are made of discrete-time data, but, because these 
processes are being evolved in continuous time, we have to derive discrete time 
processes from the continuous ones and take account of the discretization. 
 
The variance at time 𝑡 is the cumulative climacogram: 
 

 𝛤(𝑡) = 𝑣𝑎𝑟[𝑋(𝑡)] = 𝑡2𝛾(𝑡) 

 
(3.25) 

 
And the variance at time scale 𝑘 of the time averaged process is the continuous 
time climacogram (D Koutsoyiannis, 2017): 
 

 
𝛾(𝑘) = 𝑣𝑎𝑟 [

𝑋(𝑘)

𝑘
] =

𝛤(𝑘)

𝑘2
 

 

(3.26) 

 
The climacogram was introduced by (Koutsoyiannis, 2011) and its advantages  
where studied by (Dimitriadis and Koutsoyiannis, 2015) against the 
autocovariance function and the power spectrum of either a markovian or 
Hurst-Kolmogorov process. One major advantage is that the climacogram is 
not affected by discretizing a continuous process because the equation 
characteristics  are similar in either case (Koutsoyiannis, 2017). The 
climacogram is also proved to have the smallest estimation error among the 
autocovariance and the power spectrum and also its bias can be estimated by 
an analytical equation. The autocovariance of a continuous stochastic process 
of  time lag ℎ is related to the climacogram (Koutsoyiannis, 2016) with 
equation: 
 

 
𝑐(ℎ) = 𝑐𝑜𝑣[𝑥(𝑡), 𝑥(𝑡 + ℎ)] =

1

2

𝑑2𝛤(ℎ)

𝑑ℎ2
 (3.27) 
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The power spectrum 𝑠(𝑤) is defined as the cosine Fourier Transform and the 
inverse: 
 

 
𝑠(𝑤) = 4∫ 𝑐(ℎ) cos(2𝜋𝑤ℎ) 𝑑ℎ,    𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2𝜋𝑤ℎ) 𝑑𝑤

∞

0

∞

0

 (3.28) 

 
The discrete time autocovariance of time lag ℎ(Koutsoyiannis, 2016) is: 

  

𝑐𝜂 =
1

𝐷2
(
𝛤(|𝜂 + 1|𝐷) + 𝛤(|𝜂 − 1|𝐷)

2
− 𝛤(|𝜂|𝐷)) 

(3.29) 

 
And it’s related to the discrete power spectrum with: 
 

  

𝑠𝑑(𝜔) = 2𝑐0 + 4∑𝑐𝜂 cos(2𝜋𝜂𝜔) , 𝑐𝜂 = ∫ 𝑠𝑑(𝜔) cos(2𝜋𝜔𝜂) 𝑑𝜔

1/2

0

∞

𝜂=1

 
(3.30) 

 
General properties and second order characteristics of  continuous and 
discrete time process can be found in (Koutsoyiannis, 2021). The Hurst-
Kolmogorov process is attributed to (Hurst, 1951) who introduced this idea  
while working on the statistical properties of hydrological time series and to 
(Kolmogorov, 1940) who developed a similar mathematical process. The 
continuous Hurst-Kolmogorov process described by its climacogram is: 
 

 
𝛾(𝑘) = 𝜆 (

𝑎

𝑘
)
2−2𝐻

 
(3.31) 

 
Because the instantaneous variance of the process is infinite, the process in 
discrete time is not physically possible and that is why we construct the 
average process which behaves well, meaning it has finite properties 

(Koutsoyiannis, 2016). For 𝐻 =
1

2
 the process becomes white noise, for ½ <

𝐻 < 1 the process is persistent (long-range dependence) and for 0 < 𝐻 <
1

2
 the 

process is antipersistent. In the latter case, in the autocovariance function for 
time lag ℎ = 0 we get the variance of the process 𝑐(0) = +∞. For time lag ℎ >
0 autocovariance is negative 𝑐(ℎ) < 0 which for natural processes is not 
feasible. That’s why the Hurst-Kolmogorov can reproduce these processes at 
1/2 < 𝐻 < 1 in large scales. 
 
Table 3.1: Second order characteristics of Hurst-Kolmogorov process at 
continuous and discrete time adapted from (Koutsoyiannis, 2016). 
Property Formula Eq. 
Variance 
Continuous Time 
process 

𝛾0 = 𝛾(0) = 𝑐(0) = +∞ (3.32) 
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Averaged process at 
scale (climacogram) 

γ(𝑘) = 𝜆(𝛼/𝜅)2−2𝐻 (3.33) 

Autocovariance function 

Continuous time, lag ℎ 

𝑐(ℎ)

=

{
 
 

 
 𝜆𝐻(2𝐻 − 1) (

𝑎

ℎ
)
2−2𝐻

, 𝐻 > 1/2

𝜆𝛿 (
ℎ

𝑎
) ,                                     𝐻 = 1/2

𝜆𝐻(2𝐻 − 1) (
𝑎

ℎ
)
2−2𝐻

+ 𝛿′′(
ℎ
𝑎
), 𝐻 < 1/2

 
(3.34) 

Discrete time, lag 𝜂 =
ℎ/𝐷 

𝑐𝜂 = 𝜆(𝛼/𝐷)
2−2𝐻 (

|𝑗 − 1]2𝐻 + |𝑗 + 1]2𝐻

2

− |𝑗|2𝐻) 

(3.35) 

Power Spectrum 

Continuous time freq. 
𝑤 

𝑠(𝑤) =
2𝑎𝜆𝛤(2𝐻 + 1)sin (𝜋𝐻)

(2𝜋𝛼𝑤)2𝐻−1
) (3.36) 

 
 
The above functions describe a simple scaling law(Koutsoyiannis, 2017; 
Koutsoyiannis, 2021, 2016), when plotted in double-logarithmic plot, are 
presented as straight lines and the slope equation is: 
 

 
𝛾#(𝛥) =

𝑑(𝑙𝑛𝛾(𝛥))

𝑑(𝑙𝑛𝛥)
=
𝛥𝛾′(𝛥)

𝛾(𝛥)
 (3.37) 

 
For the climacogram and respectively 𝑐#(ℎ) and 𝑠#(𝑤) for the autocovariance 
and power spectrum. It is shown (Koutsoyiannis, 2016) that the HK process 
maintains all the log-log derivatives of the second order properties constant for 
any scale, lag and frequency, while in other processes these slopes vary with a 
change of scale, lag or frequency. In order to handle some inconsistencies of 
the HK process (Koutsoyiannis, 2016) proposed an alternative process (Hybrid 
HK) based on its climacogram described by a Cauchy type equation: 
 

  

γ(𝜅) = 𝜆(1 + (𝜅/𝑎)2𝑀)(𝐻−1)/𝑀 
(3.38) 

 
In this form, a second parameter 𝛭 is introduced defined in the interval [0,1] 
which describes local properties of the process while 𝐻 describes its global 
properties. The variance of the Hybrid HK process is in this case finite 𝛾(0) = 𝜆 
and by introducing a second parameter κ the model can achieve for small time 
scales a Markov type behaviour and for large time scales Hurst behaviour in 
analogy of the set of the parameters. Other types of HK process can be found 
in (Koutsoyiannis, 2017) described by their climacogram such as: 
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The Dagum-type (FHK-D) climacogram: 
  

 
𝛾𝑘 = 𝜆(1 − (1 + (𝑘/𝑎)2(𝐻 − 1))𝑀/(𝐻 − 1) 

 

(3.39) 

 
The mixed Cauchy-Dagum type (FHK-CD) climacogram: 
  

 
𝛾(𝑘) = 𝜆1(1 + 𝑘/𝑎1)

2𝐻−2 + 𝜆2(1 − (1 + 𝑎2/𝑘)
−2𝑀 

 

(3.40) 

 
In the case of a Hurst-Kolmogorov Process with 𝐻 > 0.5 the 𝑎𝑗 coefficients of 

the SMA model, can be calculated analytically (Koutsoyiannis, 2016) through 
equation: 
  

 

𝑎𝑗 = √
2𝛤(2𝛨 + 1) sin(𝜋𝛨) 𝛾(𝐷)

𝛤2(𝛨 + 1/2)(1 + sin(𝜋𝐻))
(
|𝑗 + 1|𝐻+1/2 + |𝑗 − 1|𝐻+1/2

2

− |𝑗|𝐻+1/2) 

 

(3.41) 

 
Where 𝛤 is the gamma function, and 𝐻  the Hurst index. 
 
 

3.3 Extension of the Symmetric Moving Average 
 
 

In this present thesis we will refer and use also the extension of the SMA 
model derived by (Dimitriadis and Koutsoyiannis, 2018), which preserves its 
first four central moments  which is found to be useful in cases where there is 
intermittent data (e.g. rainfall data, seasonal river discharge). These high order 
central moments will be found theoretically by choosing a distribution function 
which will be fitted in data.  

Classical statistics as aforementioned assume independence of the 
variables, which is not the case for hydrological processes, therefore it is 
required much larger samples to obtain estimates of similar reliability with 
classical statistics and it is suggested that it should be avoided using classical 
moments of order 𝑞 > 2 (Lombardo et al., 2014). Also (Dimitriadis and 
Koutsoyiannis, 2018) showed that for an HK process, with 𝐻 = 0.8 to estimate 
the average of the process with an error approximate to 10%𝜎 we will need a 
time series of length 𝑛 = 105.  In (Koutsoyiannis, 2021) (Digression 4.B) proves 
with a simple numerical problem that the estimators of the noncentral 
moments �̂�𝑞

′  are not a knowable quantity and we cannot define its value from a 

sample. Therefore, we will calculate theoretically from a chosen distribution 
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function their moments and preserve these moments in the simulation. The 𝑝𝑡ℎ 
moment of the SMA model is: 
  

 

𝛦[𝑥𝑖
𝑝] = 𝐸 [(∑ 𝑎|𝑗|𝑣𝑖+𝑗

𝑙

𝑗=−𝑙

)

𝑝

] 

(3.42) 

 
For 𝑝 = 4 we get: 
  

 

𝛦[𝑥𝑖
4] = 𝐸 [(∑ 𝑎|𝑗|𝑣𝑖+𝑗

𝑙

𝑗=−𝑙

)

4

]

= 𝐸[𝑣4] ∑ 𝑎|𝑗|
4

𝑙

𝑗=−𝑙

+ 6 ∑ ∑ 𝑎|𝑗|
2 𝑎|𝑘|

2

𝑙

𝑘=𝑗+1

𝑙−1

𝑗=−𝑙

 

(3.43) 

 
Extending to the fourth central moment the coefficient of kurtosis is: 
  

 

𝐶𝑘,𝑣 =
(∑ 𝑎|𝑗|

2𝑙
𝑗=−𝑙 )

2

(∑ 𝑎|𝑗|
4𝑙

𝑗=−𝑙 )
𝐶𝑘,𝑥 − 6

∑ ∑ 𝑎|𝑗|
2 𝑎|𝑘|

2𝑙
𝑘=𝑗+1

𝑙−1
𝑗=−𝑙

∑ 𝑎|𝑗|
4𝑙

𝑗=−𝑙

 

(3.44) 

 
Where 𝐶𝑘,𝑥 is the coefficient of kurtosis of 𝑥. As an example (Dimitriadis and 

Koutsoyiannis, 2018) applied the symmetric moving average scheme using 
various two-parameter distributions and preserving the first four moments to 
white noises processes and found that this methodology can approximate very 
well the theoretical distribution. Current stochastic generation schemes can 
hardly deal with non-Gaussian distributions and can hardly handle moments 
higher than second order. The SMA scheme can approximate the probability 
density function by preserving the first four central moments which is sufficient 
for various distributions used in geophysical processes. The coefficients 𝑎𝑗 of 

the SMA scheme are numerically calculated through the Fourier transform of 
the discrete power spectrum of the coefficients which is related to the discrete 
power spectrum of the process (Koutsoyiannis, 2000): 
 

𝑠𝑑
𝑎(𝜔) = √2𝑠𝑑(𝜔) 

 
where  𝑠𝑑

𝑎(𝜔) and 𝑠𝑑(𝜔) are the power spectra of the SMA coefficients and of 
the discrete time process respectively. The steps we followed were:  
 

a) Remove the mean and divide by the standard deviation for each time 
series, in order to create a dimensionless data set (this is done because 
the Generalized HK model cannot handle the periodicities of the data). 
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b)  Create the climacogram for each dimensionless time series and find 
Hurst Index. 
c) Estimation of the first four central moments from the dimensionless time 
series. 
d) The parameters of the GHK model that were the input of our model are: 
the mean value, the standard deviation, the coefficient of skewness, the 
coefficient of kurtosis, Hurst index and the length of the time series. 
e) Synthesis of standardized time series through the SMA scheme and GHK 
model. 
f) Add the mean value and multiply with the standard deviation to remove 
the standardization from the synthetic time series. 
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4.Applications 
 
4.1 Case Study and Energy Harvesting 
 

The global transition towards renewable energy sources is an imperative 
need to secure sustainable energy access. For island communities, the 
significance of renewable energy is even more pronounced due to their limited 
land availability and dependence on imported fossil fuels. Island communities 
face unique energy challenges due to their geographical isolation and reliance 
on imported fossil fuels. Achieving energy independence is not only a strategic 
goal for reducing dependence on costly imports but also a means of enhancing 
resilience to external shocks. In this project we explore the stochastic nature 
of renewable energy resources, emphasizing the need to assess them through 
data driven methodologies for the quantification of energy resources essential 
for achieving energy independence on islands. The methodology discussed is 
implemented in three different time series of meteorological data of the island 
of Astypalea which includes, Solar irradiance, Wind speeds and Wave heights 
and the statistical characteristics of the results of the stochastic simulation are 
compared with the ones of the historical time series to assess the efficiency of 
the model to provide adequate results. 

Renewable energy resources comprise a group of diverse sources such 
as solar, wind, waves and hydroelectric. Unlike fossil fuel, renewable sources 
derive their energy from natural processes that are continuously replenished 
making them inexhaustible. However, one of the primary challenges associated 
with renewable energy is its stochastic nature, characterized by variability and 
intermittency. Solar, wind and wave energy, for instance are highly dependent 
on weather conditions, resulting in fluctuations in energy generation. This 
inherent variability poses challenges for integrating renewable energy into 
existing grids. To quantify and harness the potential of renewable energy 
resources effectively, stochastic approaches are indispensable. 
Meteorological data, such as solar irradiance, wind speeds and wave heights 
provide valuable insights into the temporal and spatial distribution of renewable 
energy resources. For example, a comprehensive energy assessment of an 
island may reveal abundant solar potential, making solar photovoltaic systems 
a viable solution for meeting a significant portion of its electricity demand. 
Wind energy assessments could identify favorable locations for wind farm 
installations, taking into account factors such as wind speed and terrain. 
Moreover, integrating multiple renewable energy sources into hybrid energy 
systems can enhance reliability and resilience, leveraging the complementary 
nature of different resources to mitigate variability and ensure a stable power 
supply. 
  The transition towards renewable energy requires an approach 
encompassing technological innovation, policy support and community 
engagement. Governments and policymakers play an important role in creating 
enabling frameworks that promote renewable energy investments, energy 
efficiency measures and facilitate grid modernization.  
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Astypalea island is located in the Southern Aegean Sea as part of the 

Dodecanese island group of Greece. Spanning an area of approximately 97 𝑘𝑚2 
and the coastline extends over 110 𝑘𝑚, the island’s landscape is characterized 
by rugged cliffs, rolling hills and coves, all contributing to its distinct 
geomorphology. Geologically, Astypalea is primarily composed of limestone 
and volcanic rocks, shapes over time by seismic activity and erosion processes 
(ΧΡΙΣΤΟΔΟΥΛΟΥ). This geological makeup has given rise to a diverse terrain, 
featuring rocky outcrops, fertile valleys and limestone formations. The island’s 
Mediterranean climate ensures hot, dry summers and mild winters, with over 
300 days of sunshine annually. 

Astypalea is home to a permanent population of approximately 1300 
residents, primarily concentrated in the main town and several coastal villages. 
Tourism plays a significant role in Astypalea’s economy, particularly during the 
summer months when the island experiences a notable influx of visitors. 
According to the Hellenic Statistical Authority in 2018 there was more than 
11000 arrivals of visitors in the island with average overnight stays of 4 days. 
This means that in summer in certain periods the total population of the island 
is doubled and that results in the majority of the energy consumed to cover 
needs for tourists rather than the permanents residents. 

 

 
Figure 4.1: Island of Astypalea 

 
In this project we will use three historical time series covering wind speeds, 
wave heights and solar irradiance of the island of Astypalea and we will 
compare the historical statistical characteristics with the simulated ones in 
order to quantify the uncertainty. These datasets where acquired from the 
Hellenic National Meteorological Service. The proposed model and the 
statistical description of the results could help in cases where there is need to 
decide what renewable energy resources could be used in cases such as 
Astypalea, either if it is solar panels, wind turbines or wave generators or a mix 
of the above technologies. These technologies will be explained further in the 
next section. 

Solar Irradiance can be harvested through solar panels (photovoltaic 
panels) which generate electric current in certain materials when exposed to 
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light. The basic components of a solar panel include a) photovoltaic cells, 
which are the building blocks of solar panels. Typically made of semiconductor 
materials, these cells absorb photons from sunlight, exciting electrons and 
creating an electric current. Metal contacts, located on the top and bottom of 
the cell, metal contacts facilitate the flow of electrons generated by the 
photovoltaic effect. Anti-reflective coating, a layer on the top surface of the cell 
reduces reflection of sunlight, allowing more photons to enter and be absorbed 
by the semiconductor material(Zaidi, 2018). Finally solar cells are encapsulated 
within a protective material such as tempered glass and polymer to shield them 
from environmental factors and ensure durability. 
 
 

 
 

Figure 4.2: Photovoltaic Panels Setup 
 
 
When sunlight hits the photovoltaic cells, it knocks electrons loose from their 
atoms, allowing them to flow freely. This flow of electrons creates an electric 
current, which can he harnessed for various applications. 
Solar panels come in different types, each with its unique characteristics and 
applications. Monocrystalline solar panels are made from single-crystal silicon, 
giving them a uniform appearance. The offer high efficiency and power output, 
making them suitable for limited roof space installations, they are durable and 
have a long lifespan. Polycrystalline solar panels are manufactured from 
multiple silicon crystals, giving them a blue appearance. They are less 
expensive to produce than monocrystalline panels making them a cost-
effective option. Although slightly less efficient than monocrystalline panels, 
they still offer good performance and are suitable for large scale installations 
where space is not a constraint. 
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Figure 4.3 Types of Solar Panels 

 
 

Thin-film panels use thin layers of photovoltaic material deposited onto 
a substrate such as glass, plastic or metal. They are lightweight and flexible, 
allowing for easy integration into various applications such as building-
integrated photovoltaics. Thin-film panels have lower efficiency compared to 
crystalline silicon panels but perform better in low light conditions. They are 
cost-effective to produce and are increasingly used in large-scale solar farms 
and portable solar chargers. 

Lastly bifacial solar panels can capture sunlight from both sides, 
maximizing energy generation. They have transparent backsheets, allowing 
sunlight to pass through and be reflected onto the rear side of the panel, 
increasing overall efficiency. Bifacial panels are suitable for installations with 
reflective surfaces or elevated mounting structures(Kenu E., 2020). They offer 
increased energy yield compared to traditional monofacial panels but come at 
a higher cost. 
While all solar panels work on the same basic principle of converting sunlight 
into electricity, they differ in terms of efficiency, cost, durability and suitability 
for various applications.  

1) Efficiency: Monocrystalline panels typically have the highest efficiency, 
followed by polycrystalline and thin film. Bifacial panels offer increased 
efficiency due to their ability to capture sunlight from both sides. 

2) Cost: Polycrystalline panels are generally more affordable than 
monocrystalline panels, making them a popular choice for large-scale 
installations. Thin film panels offer a cost-effective alternative, 
especially for applications requiring flexibility and lightweight design. 

3) Durability: Monocrystalline and polycrystalline panels are known for 
their durability and long lifespan. Thin film panels have shorter lifespans 
and may degrade faster over time. 

4) Applications: The choice of solar panel type depends on the specific 
requirements of the application. Monocrystalline panels are suitable for 
residential rooftops and small scale installations where space is limited. 
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Thin film panels are preferred for portable applications and building-
integrated photovoltaics and bifacial panes are ideal for commercial and 
utility-scale installations where maximizing energy yield is 
paramount(Vodapally and Ali, 2022). 

  
Wind energy can be harvested through Wind turbines. Wind turbines operate 

on the principle of converting kinetic energy from wind into mechanical power, 
subsequently transformed into electricity. The basic components of a wind 
turbine include the rotor blades, hub, generator, gearbox and tower. The rotor 
blades are aerodynamically designed blades which capture wind energy. Blade 
length and shape significantly influence turbine efficiency. The hub is the 
connection of the blades with the rotor shaft, transmitting rotational energy. 
The generator converts mechanical energy into electricity and the gearbox 
increases rotational speed to optimize generator performance. The tower 
provides height to maximize wind exposure. When wind strikes the rotor blades, 
it causes them to rotate. The kinetic energy from the rotating blades is 
transferred through the shaft to the generator. Then the generator converts this 
mechanical energy into electrical energy, which is subsequently transmitted to 
the power grid. 
 

 
Figure 4.4: Wind Turbine Basic parts 

 
Wind turbines can be classified based on various factors, including axis 

orientation, size and design. The two major types are horizontal axis wind 
turbines and vertical axis wind turbines. The first is the most common used 
type, where, blades rotate around a horizontal axis, is efficient in moderate to 
high wind speeds and some require a rotating mechanism to adjust to wind 
direction changes. The latter is suitable for areas with turbulent or inconsistent 
wind patterns(Konstantinidis and Botsaris, 2016). Its blades rotate around a 
vertical axis and it is less efficient than horizontal axis wind turbine but offer 
advantages in certain scenarios. Each type of wind turbine possesses distinct 
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characteristics, influencing performance, efficiency and suitability for various 
environments. 
 

1) Size and Capacity: Horizontal axis turbines have larger capacities and 
are commonly used in utility-scale projects while vertical axis turbines 
have smaller capacities and are utilized in smaller-scale applications, 
such as residential or remote locations. 

2) Efficiency and Performance:  Horizontal axis turbines exhibit higher 
efficiency, especially in consistent wind conditions, rather than vertical 
axis turbines which are more suitable in areas with turbulent winds due 
to their omnidirectional blade orientation. 

3) Cost and Maintenance: Horizontal axis turbines often require higher 
initial investments but may offer better economies of scale in large-scale 
projects. Vertical axis turbines have lower upfront costs and potentially 
lower maintenance requirements due to simple design. 

4) Adaptability to wind conditions: Horizontal axis turbines may require a 
rotation mechanism to adjust to wind direction changes ensuring 
optimal performance. Vertical axis turbines may be more adaptable to 
varying wind directions without the need for complex 
mechanisms(Wagner, 2018). 

 
Advancements in wind turbine technology continue to drive improvements 

in efficiency, performance and reliability. An example is, floating wind turbines 
designed for offshore installations, floating turbines utilize buoyancy systems 
to remain afloat and are advantageous in cases where there is limited land 
area. Multi rotor turbines incorporate multiple rotors on a single tower, 
potentially increasing energy capture efficiency and reducing land footprint. As 
technology continues to evolve, ongoing innovation promises further 
enhancements in efficiency, performance and environmental sustainability in 
the field of wind energy. 

Wave energy can be harvested through wave generators. Wave energy 
derived from the kinetic and potential energy of ocean waves, presents a 
promising avenue for renewable energy generation. Wave generators, also 
known as wave energy converters, are devices designed to capture and convert 
wave energy into electricity. Wave generators operate based on several 
fundamental principles of wave energy conversion. The most common 
mechanism involves the conversion of the oscillatory motion of waves into 
mechanical or hydraulic energy, which is transformed into electricity through 
generators(McCormick, 2007). Key components of wave generators include 
wave absorbers, power take-off systems and electrical conversion units. 
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Figure 4.5: Wave Generator 

 
Wave absorbers are the first point of contact between the incoming 

waves and the wave generator. They are designed to capture the energy from 
the waves and convert it into mechanical or hydraulic energy. Depending on the 
type of wave generator, wave absorbers may take various forms, such as 
oscillating water columns, floats, or submerged structures. Electrical 
generation units consist of generators and associated components necessary 
for converting mechanical energy into electricity. Many wave energy converters 
utilize buoyant structures to float on the surface of the water and interact with 
the incoming waves. Mooring and anchoring systems are essential for securing 
wave generators in place and preventing them from being displaced by wave 
action.  

These systems typically involve anchors, cables and attachment points 
that connect the wave generator to the seabed or other fixed structures. Control 
and monitoring systems are responsible for optimizing the performance of 
wave generators and ensuring safe and efficient operation(Falcão, 2010). 
These systems include sensors for measuring wave height, frequency and 
direction as well as control algorithms for adjusting the operation of the device 
in response to changing environmental conditions. Understanding the interplay 
between these key components is essential for designing efficient and reliable 
wave energy converters capable of harnessing the potential of ocean waves for 
renewable energy generation. 

Main types of wave generators consist of: oscillating water columns 
which utilize the vertical movement of water columns within a chamber to drive 
air turbines. As waves enter the chamber, the water level rises and falls, causing 
the air trapped above to oscillate and drive the turbine.  
Point absorbers are buoyant devices tethered to the seabed, designed to 
absorb wave energy from multiple directions. These devices oscillate or rotate 
in response to wave motion, driving hydraulic or mechanical systems to 
generate electricity. Point absorbers are adaptable to various wave conditions 
and can be deployed in offshore or nearshore environments. 

Attenuators, consist of multiple floating segments connected by flexible 
joints. As wave pass through the device, the segments move relative to each 
other, converting wave energy into mechanical motion. Attenuators offer high 
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energy capture efficiency and are suitable for locations with moderate to high 
wave intensity. Wave generators offer several advantages, including renewable 
resource availability, low environmental impact and potential for energy 
dependence(Falcão, 2010). However, there are challenges with these solutions 
such as high installations and maintenance costs, variable wave conditions and 
technological limitations. 
 
 

4.2 Application to Wave Height  
 

Our data included three times series of 7 years period (wind speed, wave 
height and period) and one time series of 1 year of solar irradiance. We will 
present for each time series the histogram of the historical series as well as 
the statistical characteristics of the historical and the simulated ones. We will 
also present each climacogram and the average values per month per hour of 
each dataset. Before applying the methodology we standardized the timeseries 
because the GHK cannot handle the periodicity and we created the 
dimensionless climacogram and  estimated the first four statistical moments. 
The procedure that was followed to created the synthetic time series is, for 
each data set we calculated the first four statistical moments and the 
climacogram. These findings were the input of our model in order to create the 
synthetic time series via the Symmetric Moving Average scheme and the GHK 
model which is a special case of the HHK model. In the next sections we will 
present these findings. The generated time series have length of 30 years. 
   

. 
 
Table 4.1: Statistical Characteristics of Wave Height 

 Historical Synthetic 
Average 0.97 0.98 

Standard Deviation 0.77 0.77 
Skewness 1.61 1.53 
Kurtosis 3.38 3.60 

Min Value 0.02 0.03 
Max Value 5.94 7.35 

 
 



4 Applications 

45 

 

 
Figure 4.6: Histogram of Historical Wave Height 

 
 
 
 

 
Figure 4.7: Histogram of Simulated Wave Height 

 
As we can see from Table (4.1), the SMA scheme well preserved the first four 
central moments of the wave height dataset. The maximum value of the 
simulated wave height differed from the maximum value of the historical one 
and that is due to the greater length of the simulation comparing with the 
historical one. The main bodies of the histograms are the same except the 
maximum values, which in the case of the simulation we find larger values. 
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Table 4.2: Average Historical Wave Height per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 1.07 1.19 1.05 0.97 0.69 0.98 1.22 1.14 1.02 0.82 0.92 0.99 
1 1.08 1.19 1.04 0.98 0.68 0.98 1.20 1.12 1.02 0.82 0.92 0.99 
2 1.07 1.18 1.04 0.99 0.68 0.98 1.19 1.11 1.02 0.82 0.93 1.00 
3 1.07 1.17 1.02 1.00 0.68 0.97 1.16 1.09 1.00 0.83 0.92 1.00 
4 1.06 1.17 1.01 1.00 0.67 0.95 1.13 1.07 0.99 0.85 0.92 1.01 
5 1.06 1.17 0.99 1.00 0.66 0.94 1.10 1.05 0.97 0.86 0.91 1.01 
6 1.05 1.16 0.98 0.99 0.64 0.91 1.07 1.03 0.96 0.85 0.90 1.02 
7 1.04 1.15 0.97 0.98 0.63 0.89 1.05 1.01 0.94 0.84 0.89 1.03 
8 1.04 1.14 0.97 0.97 0.62 0.86 1.03 0.99 0.92 0.84 0.89 1.04 
9 1.03 1.13 0.97 0.95 0.61 0.84 1.02 0.98 0.91 0.84 0.88 1.05 
10 1.03 1.12 0.98 0.94 0.60 0.83 1.03 0.97 0.91 0.83 0.88 1.06 
11 1.03 1.12 0.98 0.93 0.60 0.82 1.03 0.97 0.91 0.84 0.87 1.07 
12 1.06 1.14 0.99 0.93 0.61 0.82 1.05 0.98 0.93 0.84 0.87 1.07 
13 1.06 1.16 1.03 0.93 0.62 0.83 1.08 1.00 0.96 0.84 0.88 1.08 
14 1.06 1.17 1.04 0.92 0.62 0.84 1.10 1.02 0.99 0.84 0.88 1.08 
15 1.05 1.16 1.05 0.92 0.63 0.86 1.13 1.04 1.00 0.85 0.88 1.07 
16 1.05 1.18 1.05 0.94 0.64 0.87 1.15 1.07 1.01 0.85 0.88 1.06 
17 1.05 1.19 1.06 0.94 0.65 0.89 1.18 1.10 1.02 0.84 0.88 1.04 
18 1.05 1.17 1.06 0.95 0.66 0.90 1.20 1.12 1.02 0.84 0.88 1.03 
19 1.05 1.17 1.05 0.96 0.67 0.92 1.22 1.13 1.02 0.84 0.89 1.02 
20 1.05 1.18 1.05 0.96 0.68 0.94 1.24 1.16 1.03 0.83 0.89 1.01 
21 1.04 1.17 1.05 0.97 0.69 0.97 1.24 1.16 1.02 0.83 0.89 1.01 
22 1.05 1.18 1.05 0.97 0.69 0.98 1.24 1.16 1.02 0.83 0.89 1.01 
23 1.05 1.19 1.04 0.96 0.68 0.99 1.23 1.15 1.01 0.82 0.89 1.01 

 
Table 4.3: Average Simulated Wave Height per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 1.03 1.18 1.03 1.01 0.68 1.01 1.22 1.24 1.01 0.84 0.95 0.93 
1 1.04 1.17 1.01 1.01 0.68 1.00 1.20 1.22 1.01 0.84 0.96 0.94 
2 1.04 1.15 1.02 1.02 0.69 1.00 1.18 1.20 0.99 0.84 0.97 0.95 
3 1.03 1.14 1.00 1.03 0.70 0.99 1.16 1.17 0.98 0.85 0.97 0.95 
4 1.02 1.15 0.99 1.02 0.69 0.98 1.11 1.15 0.98 0.87 0.96 0.96 
5 1.02 1.15 0.98 1.01 0.69 0.96 1.09 1.14 0.97 0.88 0.94 0.96 
6 1.00 1.16 0.97 1.02 0.67 0.94 1.06 1.12 0.96 0.88 0.93 0.98 
7 0.99 1.15 0.96 1.01 0.65 0.92 1.04 1.09 0.94 0.88 0.93 1.00 
8 0.99 1.14 0.97 1.00 0.63 0.88 1.02 1.07 0.92 0.89 0.92 1.00 
9 0.99 1.14 0.98 0.99 0.63 0.86 1.01 1.06 0.90 0.89 0.91 1.01 
10 0.99 1.13 0.98 0.99 0.62 0.85 1.01 1.06 0.89 0.88 0.89 1.03 
11 1.00 1.14 0.99 0.97 0.63 0.83 1.02 1.07 0.89 0.87 0.87 1.03 
12 1.02 1.16 1.00 0.97 0.64 0.83 1.05 1.07 0.91 0.87 0.88 1.04 
13 1.01 1.17 1.04 0.97 0.64 0.84 1.08 1.09 0.94 0.88 0.89 1.04 
14 1.00 1.17 1.06 0.97 0.65 0.86 1.11 1.11 0.97 0.88 0.90 1.04 
15 0.99 1.18 1.07 0.96 0.66 0.87 1.13 1.13 1.00 0.87 0.90 1.03 
16 0.99 1.20 1.06 0.97 0.66 0.89 1.16 1.15 1.01 0.87 0.89 1.00 
17 1.00 1.21 1.07 0.97 0.66 0.91 1.18 1.17 1.02 0.87 0.90 0.99 
18 1.00 1.20 1.06 0.99 0.67 0.93 1.20 1.21 1.02 0.86 0.90 0.98 
19 1.00 1.20 1.06 1.00 0.69 0.95 1.22 1.21 1.02 0.85 0.90 0.97 
20 1.00 1.19 1.05 1.01 0.69 0.97 1.24 1.25 1.02 0.87 0.91 0.96 
21 0.99 1.19 1.05 1.00 0.70 1.00 1.24 1.26 1.02 0.86 0.90 0.97 



4 Applications 

47 

 

22 1.00 1.19 1.05 1.00 0.69 1.01 1.24 1.26 1.01 0.85 0.91 0.95 
23 1.00 1.18 1.01 1.01 0.68 1.02 1.22 1.25 1.01 0.84 0.92 0.95 

 
 

 
Figure 4.8: Climacogram of Wave Height 

 
 
The GHK model was able to capture the climacogram of the synthetic time 
series. Any inconsistencies are met only in large scales and this is due to the 
length of the simulation. The greater the length of the simulation the better 
approximation of the climacogram. In our case a 30 year simulation was 
sufficient for the purpose of the project. 
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4.3 Application to Wave Period  
 
Wave period data set consisted of 7 year and the length of the synthetic time 
series is 30 years. Comparing the statistical characteristics of the historical and 
simulated series we can see that the model was able to preserve the statistical 
characteristics in the synthetic time series. 
 
Table 4.4: Statistical Characteristics of Wave Period 

 Historical Synthetic 
Average 4.45 4.42 

Standard Deviation 0.92 0.91 
Skewness 0.75 0.79 
Kurtosis 0.72 0.92 

Min Value 2.46 1.9 
Max Value 8.7 10.98 

 
 

 
Figure 4.9: Histogram of Historical Wave Period 

 
 
The maximum value of the simulated wave period differed from the maximum 
value of the historical one and that is due to the greater length of the simulation 
comparing with the historical one. The main bodies of the histograms are the 
same except the maximum values, which in the case of the simulation we find 
larger values. 
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Figure 4.10: Histogram of Simulated Wave Period 
 
 
 
Table 4.5: Average Historical Wave Period per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 4.56 4.66 4.53 4.52 4.20 4.27 4.48 4.50 4.43 4.42 4.42 4.44 
1 4.56 4.65 4.52 4.55 4.19 4.28 4.48 4.50 4.44 4.42 4.41 4.43 
2 4.56 4.64 4.52 4.57 4.19 4.29 4.47 4.49 4.44 4.41 4.42 4.43 
3 4.57 4.63 4.53 4.61 4.19 4.31 4.47 4.49 4.45 4.41 4.41 4.45 
4 4.57 4.64 4.53 4.63 4.18 4.32 4.47 4.48 4.46 4.43 4.41 4.46 
5 4.58 4.63 4.53 4.65 4.17 4.34 4.46 4.48 4.46 4.45 4.41 4.48 
6 4.59 4.66 4.53 4.65 4.15 4.35 4.46 4.49 4.46 4.47 4.41 4.50 
7 4.61 4.65 4.51 4.64 4.14 4.34 4.46 4.49 4.45 4.48 4.43 4.52 
8 4.61 4.64 4.51 4.62 4.12 4.32 4.45 4.47 4.43 4.48 4.43 4.53 
9 4.62 4.64 4.51 4.61 4.11 4.30 4.44 4.46 4.41 4.49 4.44 4.54 
10 4.63 4.63 4.50 4.59 4.11 4.27 4.44 4.43 4.39 4.48 4.43 4.56 
11 4.62 4.62 4.47 4.56 4.09 4.23 4.42 4.40 4.38 4.49 4.43 4.57 
12 4.61 4.61 4.45 4.53 4.08 4.20 4.41 4.37 4.37 4.48 4.41 4.57 
13 4.61 4.61 4.47 4.51 4.07 4.17 4.39 4.34 4.37 4.46 4.39 4.58 
14 4.61 4.62 4.48 4.49 4.05 4.15 4.39 4.33 4.39 4.46 4.39 4.59 
15 4.61 4.64 4.48 4.48 4.05 4.14 4.39 4.33 4.39 4.45 4.39 4.59 
16 4.60 4.67 4.49 4.48 4.05 4.13 4.40 4.35 4.40 4.45 4.39 4.59 
17 4.59 4.69 4.51 4.47 4.06 4.13 4.41 4.38 4.41 4.45 4.39 4.58 
18 4.58 4.69 4.52 4.49 4.07 4.14 4.43 4.40 4.42 4.46 4.40 4.58 
19 4.58 4.69 4.52 4.50 4.10 4.16 4.45 4.42 4.42 4.46 4.41 4.56 
20 4.57 4.68 4.53 4.51 4.13 4.18 4.47 4.45 4.43 4.46 4.41 4.54 
21 4.56 4.68 4.53 4.53 4.16 4.21 4.49 4.48 4.43 4.45 4.40 4.52 
22 4.56 4.68 4.53 4.52 4.18 4.25 4.49 4.49 4.43 4.45 4.40 4.50 
23 4.55 4.68 4.52 4.52 4.19 4.26 4.49 4.50 4.43 4.45 4.39 4.48 
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Table 4.6: Average Simulated Wave Period per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 4.48 4.71 4.50 4.58 4.20 4.20 4.40 4.39 4.45 4.39 4.39 4.43 
1 4.48 4.69 4.49 4.59 4.20 4.20 4.40 4.39 4.47 4.38 4.40 4.43 
2 4.48 4.66 4.49 4.62 4.19 4.22 4.39 4.37 4.48 4.38 4.42 4.44 
3 4.48 4.65 4.52 4.67 4.19 4.24 4.39 4.38 4.48 4.38 4.42 4.45 
4 4.48 4.64 4.54 4.71 4.17 4.26 4.36 4.37 4.49 4.39 4.43 4.46 
5 4.50 4.64 4.54 4.72 4.15 4.27 4.37 4.36 4.48 4.41 4.42 4.46 
6 4.52 4.67 4.52 4.72 4.14 4.27 4.37 4.37 4.48 4.44 4.41 4.48 
7 4.53 4.68 4.50 4.71 4.12 4.27 4.37 4.36 4.48 4.44 4.43 4.50 
8 4.54 4.67 4.50 4.66 4.11 4.24 4.37 4.34 4.46 4.44 4.44 4.52 
9 4.56 4.65 4.51 4.65 4.11 4.22 4.36 4.33 4.44 4.44 4.44 4.51 
10 4.57 4.64 4.49 4.64 4.10 4.19 4.35 4.29 4.41 4.43 4.42 4.51 
11 4.56 4.64 4.46 4.62 4.08 4.16 4.34 4.27 4.39 4.42 4.41 4.54 
12 4.55 4.64 4.43 4.58 4.07 4.13 4.33 4.25 4.38 4.41 4.40 4.54 
13 4.53 4.63 4.44 4.57 4.07 4.11 4.32 4.21 4.38 4.40 4.39 4.56 
14 4.52 4.65 4.45 4.55 4.05 4.09 4.31 4.19 4.39 4.40 4.40 4.58 
15 4.52 4.67 4.45 4.53 4.05 4.07 4.31 4.20 4.39 4.40 4.40 4.59 
16 4.50 4.70 4.45 4.54 4.05 4.06 4.31 4.22 4.40 4.41 4.38 4.58 
17 4.52 4.70 4.48 4.52 4.06 4.06 4.33 4.24 4.40 4.39 4.38 4.57 
18 4.50 4.69 4.50 4.54 4.07 4.07 4.34 4.27 4.42 4.40 4.38 4.59 
19 4.50 4.70 4.50 4.56 4.10 4.09 4.36 4.29 4.43 4.41 4.40 4.57 
20 4.48 4.70 4.50 4.56 4.13 4.11 4.39 4.33 4.45 4.42 4.41 4.54 
21 4.47 4.69 4.51 4.58 4.17 4.14 4.41 4.37 4.44 4.41 4.41 4.52 
22 4.48 4.70 4.51 4.59 4.18 4.18 4.42 4.37 4.44 4.41 4.40 4.51 
23 4.49 4.71 4.51 4.58 4.18 4.20 4.42 4.39 4.43 4.42 4.38 4.47 

 
 

 
Figure 4.11: Climacogram of Wave Period 
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The model was able to capture the climacogram of the synthetic time series. 
Any inconsistencies are met only in large scales and this is due to the length of 
the simulation. The greater the length of the simulation the better 
approximation of the climacogram. 

 
4.4 Application to Wind Speed 
 
Wind Speed data set consisted of 7 year and the length of the synthetic time 
series is 30 years. Comparing the statistical characteristics of the historical and 
simulated series we can see that the model was able to preserve the statistical 
characteristics in the synthetic time series. 
 
Table 4.7: Statistical Characteristics of Wind Speed 

 Historical Synthetic 
Average 6.46 6.39 

Standard Deviation 3.08 3.07 
Skewness 0.32 0.13 
Kurtosis -0.23 0.12 

Min Value 0.01 0.01 
Max Value 19.49 20.60 

 
 
 

 
Figure 4.12: Histogram of Historical Wind Speed 

 
Table (4.7), shows that the SMA scheme well preserved the first four central 
moments of the wind speed dataset. The main bodies of the histograms are 
the same except the maximum values, which in the case of the simulation we 
find larger values. 
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Figure 4.13: Daily Average Wind Speed 

 
 
 

Table 4.8: Average Historical Wind Speed per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 7.33 7.56 6.70 6.37 5.15 6.32 7.52 7.20 6.83 6.31 6.55 7.03 
1 7.14 7.38 6.53 6.22 4.96 6.12 7.32 7.01 6.66 6.13 6.38 6.88 
2 6.98 7.25 6.39 6.09 4.79 5.95 7.13 6.82 6.50 5.97 6.23 6.76 
3 6.87 7.15 6.30 6.00 4.67 5.79 6.95 6.65 6.35 5.84 6.10 6.67 
4 6.81 7.11 6.25 5.93 4.58 5.65 6.78 6.49 6.23 5.74 6.01 6.62 
5 6.79 7.10 6.25 5.89 4.54 5.53 6.63 6.33 6.13 5.67 5.94 6.59 
6 6.81 7.14 6.30 5.89 4.53 5.44 6.49 6.19 6.05 5.65 5.91 6.60 
7 6.80 7.09 6.30 5.88 4.54 5.54 6.64 6.34 6.10 5.69 5.90 6.60 
8 6.83 7.08 6.34 5.91 4.58 5.66 6.81 6.50 6.18 5.75 5.92 6.62 
9 6.89 7.11 6.42 5.98 4.69 5.82 7.01 6.68 6.29 5.84 5.98 6.68 
10 6.99 7.17 6.54 6.11 4.84 6.00 7.22 6.88 6.42 5.95 6.08 6.76 
11 7.12 7.27 6.70 6.29 5.03 6.20 7.45 7.10 6.58 6.09 6.21 6.88 
12 7.28 7.40 6.90 6.50 5.25 6.42 7.70 7.33 6.76 6.24 6.37 7.03 
13 7.15 7.29 6.74 6.39 5.17 6.40 7.68 7.28 6.69 6.14 6.27 6.88 
14 7.05 7.21 6.62 6.31 5.12 6.39 7.66 7.24 6.63 6.07 6.19 6.76 
15 6.98 7.17 6.55 6.27 5.10 6.41 7.65 7.21 6.59 6.02 6.13 6.68 
16 6.95 7.18 6.52 6.26 5.12 6.43 7.65 7.18 6.57 5.99 6.11 6.65 
17 6.95 7.23 6.52 6.28 5.18 6.48 7.65 7.16 6.56 5.99 6.10 6.66 
18 6.98 7.33 6.56 6.33 5.26 6.53 7.66 7.15 6.57 6.02 6.12 6.70 
19 6.96 7.27 6.49 6.26 5.18 6.47 7.62 7.13 6.58 6.00 6.12 6.68 
20 6.97 7.26 6.46 6.21 5.12 6.42 7.59 7.13 6.60 6.01 6.14 6.69 
21 7.01 7.28 6.45 6.19 5.09 6.39 7.57 7.13 6.64 6.04 6.19 6.75 
22 7.08 7.35 6.49 6.20 5.08 6.38 7.56 7.14 6.68 6.09 6.28 6.84 
23 7.18 7.45 6.58 6.24 5.10 6.38 7.56 7.16 6.74 6.17 6.40 6.95 
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Table 4.9: Average Simulated Wind Speed per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 6.53 6.34 6.45 6.47 6.41 6.58 6.98 6.97 7.02 7.07 7.13 6.92 
1 6.43 6.19 6.27 6.33 6.22 6.38 6.78 6.76 6.88 6.86 6.98 6.74 
2 6.28 6.01 6.09 6.17 6.03 6.25 6.61 6.62 6.70 6.72 6.84 6.60 
3 6.13 5.90 5.94 6.04 5.88 6.12 6.49 6.47 6.55 6.60 6.75 6.53 
4 6.08 5.84 5.83 5.93 5.76 6.01 6.38 6.42 6.45 6.49 6.74 6.51 
5 6.09 5.81 5.73 5.87 5.67 5.86 6.32 6.32 6.41 6.52 6.73 6.46 
6 6.10 5.81 5.67 5.75 5.59 5.73 6.22 6.30 6.41 6.57 6.75 6.48 
7 6.11 5.86 5.73 5.81 5.66 5.80 6.26 6.36 6.36 6.59 6.75 6.47 
8 6.14 5.92 5.82 5.92 5.74 5.92 6.38 6.37 6.39 6.63 6.81 6.50 
9 6.18 5.99 5.92 6.05 5.89 6.08 6.44 6.44 6.52 6.69 6.85 6.52 
10 6.29 6.12 6.06 6.20 6.04 6.26 6.60 6.58 6.66 6.79 6.91 6.61 
11 6.48 6.33 6.26 6.40 6.23 6.44 6.77 6.74 6.84 6.96 7.06 6.76 
12 6.69 6.54 6.45 6.61 6.44 6.66 6.95 7.00 7.06 7.13 7.27 6.90 
13 6.55 6.46 6.32 6.53 6.41 6.62 6.88 6.87 6.96 6.99 7.11 6.73 
14 6.46 6.40 6.25 6.48 6.36 6.52 6.79 6.74 6.85 6.90 6.97 6.63 
15 6.42 6.39 6.29 6.46 6.38 6.49 6.76 6.65 6.78 6.83 6.88 6.63 
16 6.40 6.42 6.35 6.50 6.38 6.45 6.71 6.66 6.72 6.78 6.83 6.65 
17 6.42 6.45 6.41 6.50 6.37 6.47 6.69 6.63 6.66 6.80 6.81 6.67 
18 6.48 6.50 6.48 6.56 6.38 6.51 6.71 6.64 6.70 6.81 6.84 6.71 
19 6.42 6.42 6.43 6.52 6.35 6.51 6.74 6.57 6.70 6.78 6.76 6.65 
20 6.36 6.39 6.40 6.47 6.31 6.50 6.74 6.61 6.70 6.80 6.77 6.61 
21 6.34 6.39 6.36 6.45 6.35 6.52 6.75 6.67 6.75 6.84 6.80 6.67 
22 6.36 6.33 6.38 6.44 6.40 6.54 6.81 6.78 6.79 6.89 6.88 6.73 
23 6.39 6.31 6.42 6.43 6.41 6.55 6.89 6.87 6.92 6.96 6.96 6.81 

 
 

 

 
Figure 4.14: Climacogram of Wind Speed 
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30 years of simulation for the wind speed data set were adequate and the GHK 
model captured very well the synthetic time series.  
 

4.5 Application to Solar Irradiance 
 
Solar Irradiance data set consisted of 1 year and the length of the synthetic 
time series is 30 years. Comparing the statistical characteristics of the 
historical and simulated series we can see that the model was able to preserve 
the statistical characteristics in the synthetic time series 
 
 
Table 4.10: Statistical Characteristics of Solar Irradiance 

 Historical Synthetic 
Average 205.82 207.62 

Standard Deviation 290.21 292.88 
Skewness 1.21 1.20 
Kurtosis 0.09 0.26 

Min Value 0.02 0.01 
Max Value 1023.5 1342.49 

 
As aforementioned the main bodies of the histograms are the same except the 
maximum values, which in the case of the simulation of the solar irradiance we 
find larger values. 
 

 
Figure 4.15: Histogram of Historical Solar Irradiance 
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Figure 4.16: Daily Average Solar Irradiance 
 
 
 
Table 4.11: Average Historical Solar Irradiance per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
5 0.1 0.1 0.1 0.1 0.1 0.4 0.2 0.1 0.1 0.1 0.1 0.1 
6 0.1 0.1 0.1 2.3 17.2 27.7 15.3 3.8 0.4 0.1 0.1 0.2 
7 0.1 0.1 6.5 62.2 122.2 169.1 133.0 78.6 29.8 6.1 0.4 0.7 
8 3.8 16.7 89.2 222.0 274.3 354.9 313.8 253.9 171.1 96.3 30.7 9.0 
9 80.1 112.3 264.7 418.2 425.4 534.1 496.7 451.7 351.3 251.8 139.8 97.7 
10 201.3 240.2 426.8 604.0 535.9 712.2 676.1 637.5 511.3 402.0 250.2 220.7 
11 319.5 374.9 570.7 726.4 671.8 845.1 778.6 774.9 612.8 531.5 370.4 312.7 
12 375.2 436.4 648.4 792.1 736.1 909.7 870.1 872.9 728.7 537.4 425.4 360.7 
13 412.6 478.1 708.1 774.8 764.8 915.6 914.4 902.8 759.0 568.5 410.4 376.3 
14 415.9 470.5 657.9 694.0 704.7 907.8 857.7 840.6 735.7 571.9 358.7 344.4 
15 348.1 409.7 588.2 619.9 645.1 795.9 772.1 755.0 592.6 456.1 279.6 270.0 
16 228.3 296.8 459.3 527.0 570.2 674.9 640.9 615.2 460.0 315.2 185.1 171.3 
17 106.4 164.3 281.8 373.7 406.2 494.6 511.9 455.3 307.6 151.4 73.8 69.9 
18 13.7 45.5 124.2 192.7 241.6 320.6 338.8 260.3 113.7 30.4 3.3 9.8 
19 0.6 0.8 13.6 47.9 88.5 151.6 152.8 84.5 12.6 0.3 0.1 1.5 
20 0.1 0.1 0.1 0.8 8.1 25.2 23.1 4.0 0.1 0.1 0.1 0.1 
21 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 
22 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
23 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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Table 4.12: Average Simulated Solar Irradiance per Month per Hour 
 Jan Feb Mar Apr May Jun Jul Sep Aug Oct Nov Dec 
0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
5 0.1 0.1 0.1 0.1 0.1 0.4 0.2 0.1 0.1 0.1 0.1 0.1 
6 0.1 0.1 0.1 2.6 17.0 27.7 16.1 4.0 0.4 0.1 0.1 0.2 
7 0.1 0.1 7.4 66.5 121.8 169.2 136.0 79.5 30.9 6.2 0.4 0.8 
8 3.8 17.0 95.9 230.4 271.7 355.1 319.3 255.4 175.7 96.4 29.4 9.2 
9 81.3 113.3 279.1 429.5 421.9 534.2 506.5 453.0 359.7 252.0 134.2 98.5 
10 203.3 243.6 448.7 618.1 531.9 713.1 682.2 638.4 523.5 402.1 239.6 222.7 
11 322.1 380.3 597.6 743.3 670.6 845.0 795.4 776.7 629.3 531.1 358.2 316.1 
12 378.9 440.5 678.2 809.7 741.1 908.6 885.8 873.3 744.1 535.9 409.5 364.9 
13 416.7 482.6 738.2 799.6 769.6 914.2 926.9 903.0 773.5 568.1 393.5 378.1 
14 419.4 474.8 686.4 725.1 711.4 907.1 878.3 840.5 747.3 570.2 343.6 344.9 
15 350.9 410.9 613.8 649.4 653.0 795.6 794.3 755.7 605.4 452.4 267.1 271.2 
16 230.8 296.6 480.1 553.3 574.6 674.8 662.3 615.8 472.2 312.8 176.0 172.7 
17 108.3 165.1 297.2 394.2 407.6 493.5 526.5 455.7 315.6 150.8 69.9 71.6 
18 14.5 46.0 131.4 205.6 242.7 320.2 346.6 261.5 118.1 30.2 3.1 11.1 
19 0.7 0.8 14.7 52.0 89.3 151.8 157.5 85.0 13.5 0.3 0.1 1.8 
20 0.1 0.1 0.1 0.9 8.3 25.2 24.1 4.1 0.1 0.1 0.1 0.1 
21 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 
22 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
23 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 

 
 

 
Figure 4.17: Climacogram of Solar Irradiance 
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Finally in the case of  the  Solar Irradiance the GHK model ,   performed  well 
and from the  distribution of the synthetic data we can  conclude that the SMA 
scheme well captured the first  four statistical moments  such as the 
intermittent behavior of the dataset.
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5. Conclusions 
 

• We presented an extension of the Symmetric Moving Average Scheme 
in order to preserve the first four statistical moments including the 
coefficient of kurtosis in the simulation. 

• The synthetic time series of the GHK model were produced by the SMA 
scheme. 

• Before applying the GHK model, all of the datasets were standardized 
and estimated the climacogram and the statistical moments of the 
standardized time series because the GHK model cannot handle the 
periodicities of the examined data. 

• All the datasets exhibit long range dependence, which means clustering 
of low or high values (Hurst – Kolmogorov Dynamics) with Hurst index 
of 𝐻 = 0.6  
 

 
Figure 5.1: Climacogram of all processes 

 

• The GHK model was able to capture the climacogram of the synthetic 
time series, only to large scales there was a deviation which could be 
dealt by increasing the length of the simulation. 

• The preservation up to the fourth moment was adequate, since 
preservation of additional moments slightly improve the distribution 
simulation. 

• As we can see from the statistical characteristics of historical and 
synthetic time series (Table 5.1) the Symmetric Moving average 
scheme well preserved the first four statistical moments. 
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Table 5.1: Statistical Characteristics of all datasets 
 Wind 

(H) 
Wind (S) Wave H. 

(H) 
Wave H. 

(S) 
Wave 
P. (H) 

Wave 
P. (S) 

Solar 
(H) 

Solar (S) 

Average 6.46 6.39 0.97 0.98 4.45 4.42 205.82 207.62 

St. Deviation 3.08 3.07 0.77 0.77 0.92 0.91 290.21 292.88 

Skewness 0.32 0.13 1.62 1.53 0.75 0.79 1.21 1.20 

Kurtosis -0.32 0.12 3.39 3.60 0.72 0.92 0.09 0.26 

Min Value 0.01 0.01 0.02 0.03 2.46 1.9 0.02 0.01 

Max Value 19.49 20.60 5.94 7.35 8.7 10.98 1023.5 1342.49 

         

 
• The statistical moments of the historical and simulated are close, but, 

the maximum values of the synthetic series are greater than those of the 
historical ones and this is due to the length of the simulation being 
greater than the historical ones. 

• The extended SMA scheme as we can see also preserved the 
intermittent behavior of the processes. 

• The distribution of the data is approximated to a desired degree rather 
than precisely preserved. 

 
  
A more precise way on estimating the desired distribution of the historical 
data is proposed by (Koutsoyiannis, 2021) using K-moments 
(Koutsoyiannis, 2023, 2019) which provide a framework for model fitting, 
using the entire dataset rather than relying on a few moments. With this 
method we estimate the K-moments of a dataset and we choose a marginal 
distribution for the process based on the K-moments and then we calculate 
theoretically the classical moments of the process. K-moments offer a 
better approximation of a distribution rather than classical moments and 
are advantageous in the stochastic theory and its applications in 
geophysical phenomena especially when dealing with extremes. 
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