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Highlights 8 

• Prediction-oriented evaluation of rainfall trends 9 

• Trend and mean models are used to project 30 years of rainfall indices  10 

• The predictive skill of the models is assessed by moving-window validation 11 

• Trends have the worst performance and local mean models the best 12 

Abstract 13 

Non-stationarity approaches have been increasingly popular in hydrology, being dominated by 14 

the practice of identifying linear trends in data through in-sample analysis. In this work, we 15 

reframe the problem of trend identification using the out-of-sample predictive performance of 16 

trends as a reference point. We devise a systematic methodological framework in which trends 17 

are compared to simpler mean models, based on their performance in predicting climatic-scale 18 

(30-year) annual rainfall indices, i.e. maxima, totals, wet-day average and probability dry, from 19 

long-term daily records. The models are calibrated in two different schemes: block-moving, i.e. 20 

fitted on the recent 30 years of data, obtaining the local trend and local mean, and global-21 

moving, i.e. fitted on the whole period known to an observer moving in time, thus obtaining the 22 

global trend and global mean. The investigation of empirical records spanning over 150 years 23 
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suggests that a great degree of variability has been ever present in the rainfall process, leaving 24 

small potential for long-term predictability. The local mean model ranks first in terms of average 25 

predictive performance, followed by the global mean and the global trend, in decreasing order of 26 

performance, while the local trend model ranks last among the models, showing the worst 27 

performance overall. Parallel experiments from synthetic timeseries characterized by persistence 28 

corroborated this finding, suggesting that future long-term variability of persistent processes is 29 

better captured using parsimonious features of the past. In line with the empirical findings, it is 30 

shown that, prediction-wise, simple is preferable to trendy.  31 

Keywords:  trends, rainfall extremes, probability dry, out-of-sample validation, predictive 32 

performance, rainfall projections33 
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1. Introduction 34 

“A trend is a trend is a trend / But the question is, will it bend? / 35 

Will it alter its course / Through some unforeseen force / 36 

And come to a premature end?”            37 

(Sir Alec Cairncross, 1969, signing as “Stein Age Forecaster”) 38 

In the past decades there has been a plethora of trend analyses in rainfall studies (Bunting et al., 39 

1976; Haylock and Nicholls, 2000, 2000; Rotstayn and Lohmann, 2002; Modarres and da Silva, 40 

2007; Ntegeka and Willems, 2008; Kumar et al., 2010), and it could be argued that relevant 41 

studies are still on the rise (e.g. Biasutti, 2019; Degefu et al., 2019; Folton et al., 2019; Khan et 42 

al., 2019; Papalexiou and Montanari, 2019; Quadros et al., 2019; Rahimi and Fatemi, 2019). For 43 

a quantitative analysis of the relevant literature, the reader is referred to Appendix I. This boom 44 

of trend studies and related results has brought aside it a growing discourse on the appropriate 45 

modelling approach. There has been an ongoing debate between stationary vs nonstationary 46 

methods, with the former representing a well-established hydrological practice (Montanari and 47 

Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015) and the latter reflecting recent 48 

attempts of the scientific community to find a new way to respond to change and uncertainty 49 

(Milly et al., 2008; Craig, 2010; Milly et al., 2015), concepts which however are already 50 

represented in the stationarity framework (Koutsoyiannis and Montanari, 2007; Serinaldi and 51 

Kilsby, 2018).  52 

Deterministic trend modelling in hydrology has been examined —and mostly criticized, on 53 

different grounds, namely with respect to empirical evidence (McKitrick and Christy, 2019; 54 

Cohn and Lins, 2005), theoretical consistency (Koutsoyiannis and Montanari, 2015), modelling 55 

efficiency (Montanari and Koutsoyiannis, 2014), as well as meaningfulness of the results 56 
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(Serinaldi et al., 2018). In this research, we examine the trend modelling framework from a new 57 

perspective, through the evaluation of its out-of-sample modelling qualities, namely, its 58 

predictive powers for a given record.  59 

For this purpose, we introduce a validation framework for the evaluation of the results, 60 

adding simpler, mean models in the pool of candidates, and we base the reasoning of model 61 

selection on the statistical out-of-sample performance of the models. While split-sample 62 

techniques (Klemeš, 1986) and multi-model approaches (Georgakakos et al., 2004; Duan et al., 63 

2007) are certainly not new in hydrology, in the field of trend modelling these concepts are 64 

usually disregarded, with the research question typically revolving explanatory performance, 65 

mostly by means of in-sample measures, as hypothesis testing (Shmueli, 2010). In this work, we 66 

extend the simple split-sample validation by introducing a moving window calibration and 67 

validation approach that progressively scans each record by sliding windows of climatic-length 68 

(30 years). In this manner, we obtain a sample of estimates of the models’ predictive 69 

performance, instead of a single value.  70 

By shifting the focus to the predictive modelling of linear trend, this analysis seeks to 71 

answer the following key questions: (a) how well are the rainfall statistics of the most recent 72 

climatic period predicted by the candidate models based on the linear trend calibrated to the prior 73 

30 year period? and (b) how do the statistics of the predictive performance of linear trends 74 

compare to the ones derived from application of simple mean models? The first question is 75 

driven by the omnipresent scientific concerns regarding intensification of extremes during the 76 

last decades (e.g. Houghton et al., 1991; Parmesan and Yohe, 2003; Oreskes, 2004; Solomon et 77 

al., 2007; McCarl et al., 2008; Moss et al., 2010; Craig, 2010; Pachauri et al., 2014; Kellogg, 78 

2019), and is consciously biased in favour of a model capturing the variability of the most recent 79 
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period of data. The second question introduces the abovementioned methodological framework 80 

for validating model predictions, which is applied to the empirical long-term rainfall records as 81 

well as to synthetic series produced in order to mimic the natural long-term variability of the 82 

rainfall process. 83 

2. Dataset 84 

Our dataset is an update of the previous long-term dataset explored in Iliopoulou et al. (2018) of 85 

long rainfall records surpassing 150 years of daily values. It includes the 60 longest available 86 

daily rainfall records collected from global datasets, i.e. the Global  Historical  Climatology  87 

Network Daily  database  (Menne et al., 2012), the European  Climate  Assessment and Dataset 88 

(Klein Tank et al., 2002), as well as third parties listed in in the Appendix II (Table A1), along 89 

with a brief summary of the stations’ properties; the geographic location of the rain gauges is 90 

shown in Figure 1. The length of the timeseries provides rare insights into long-term rainfall 91 

variability and enables the statistical evaluation of the predictive performance of linear trends 92 

from multiple time windows.  93 
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 94 

Figure 1. Map of the 60 stations with longest records used in the analysis. 95 

3. Methodological framework 96 

3.1 Overview of literature approaches to trend modelling: from explanatory trends to 97 

out-of-sample performance  98 

It is well-known that studying the explanatory power of trends in hydroclimatic data is a very 99 

active research field; see the literature analysis included in the Appendix I for the rising use of 100 

relevant in-text words as well as in-title words from Google Scholar. Before discussing literature 101 

modelling strategies for trends, it is imperative to define the meaning of a trend per se. Although 102 

‘trends’ are frequently used as a synonym of temporal ‘changes’ (Fig. AI3 provides a 103 

quantitative analysis on the use of both words) and their notion has sometimes been extended to 104 

encompass stochastic stationary models (Fatichi et al., 2009; Chandler and Scott, 2011), the 105 

general idea behind the trend concept, is that the expected value of a response variable 𝑦 is 106 
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specified as a deterministic function of time t,  𝐸 [𝑦] = 𝑓(𝑡). The function f may take different 107 

forms —the linear model being only the first one adopted, and the most widely used. Indeed, this 108 

definition of a trend can be traced back to the development of the field of econometrics in the 109 

early 20th century, when ‘secular’ trends, meaning long-term trends, were deemed to be a 110 

component of financial timeseries, along with seasonal variation, cycles and residual elements 111 

(Persons, 1922; Mitchell, 1930). Decomposition of a timeseries into components, one of them 112 

being a trend, continued to dominate the econometrics literature, although even at early times 113 

certain critiques were raised (Slutsky, 1927). 114 

The most established technique to identify trends is hypothesis testing, i.e. a statistical 115 

inference technique that estimates the probability that an alternative hypothesis may hold true 116 

compared to the null one, characterizing the strength of evidence by significance levels. This is a 117 

dated scientific method for model evaluation, which has been in part misused. For instance, its 118 

misuse in hydrology has been showcased by seminal studies (e.g. Cohn and Lins, 2005; 119 

Koutsoyiannis and Montanari, 2007; Serinaldi et al., 2018) which have established the fact that 120 

for hydrological, non i.i.d. data the null hypothesis, which tacitly contains independence, is a 121 

priori wrong, and its rejection, if correctly interpreted, should point out to the wrong 122 

independence assumption. Still, the common practice has been to misinterpret outcomes in 123 

favour of trends. Part of the statistician community argues against the concept (Nuzzo, 2014; 124 

Wasserstein and Lazar, 2016; Amrhein and Greenland, 2018; Wasserstein et al., 2019; Amrhein 125 

et al., 2019), with the main critique summarized in the statement of the American Statistical 126 

Association that “the widespread use of 'statistical significance' (generally interpreted as 'p ≤ 127 

0.05') as a license for making a claim of a scientific finding (or implied truth) leads to 128 

considerable distortion of the scientific process” (Wasserstein and Lazar, 2016). Other inference 129 
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techniques for assessing the plausibility of changes under an a priori assumed model are also 130 

used, most notably change point analysis (Hinkley, 1970), which attempts to identify points of 131 

abrupt changes in the data. This approach too, is very sensitive on a priori hypotheses about the 132 

expected degree of variability in the data (a brief discussion on the issue in provided in Chandler 133 

and Scott, 2011). 134 

With a stronger focus on modelling power rather than confirmatory analysis, model 135 

selection criteria have been developed arising from Akaike’s work (Akaike, 1969). Akaike  has 136 

contributed to the introduction of information theory into model selection criteria (Akaike, 1974) 137 

which are now established worldwide in model inference (Anderson and Burnham, 2004) and are 138 

increasingly adopted in hydrology as well (e.g. Ye et al., 2008; Laio et al., 2009; Iliopoulou et 139 

al., 2018a). Information criteria are useful in that they try to achieve a better out-of-sample 140 

performance by prompting for parsimony when fitting the model to the calibration set. There is a 141 

vast literature on the asymptotic equivalence of information criteria and out-of-sample prediction 142 

measures under specific conditions (Stone, 1977; Shibata, 1980; Wei, 1992; Inoue and Kilian, 143 

2006), which  typically though imply large record lengths.  144 

A discourse regarding the relative powers of the abovementioned ‘in-sample’ measures 145 

compared to the assessment of predictive or out-of-sample performance is active in numerous 146 

scientific fields (Breiman, 2001; Stein, 2002; Inoue and Kilian, 2006; Yarkoni and Westfall, 147 

2017; Shmueli, 2010), while in fact, it has been argued that the distinction between the two 148 

approaches might only arise due to the different objectives of each study (Gauch, 2003; Inoue 149 

and Kilian, 2005). Obviously, predictive modelling dominates in operational fields concerned 150 

with short-term prediction, as numerical weather prediction (Lorenc, 1986), and in such domains, 151 
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it is widely acknowledged that the model yielding the best predictions, in non-stochastic terms, is 152 

not necessarily the ‘true’ one (Shmueli, 2010).  153 

The premise of this work is that while explanatory performance of trends has been 154 

thoroughly explored in hydrological studies (e.g. Chandler and Scott (2011) provide a 155 

comprehensive review on the matter), much less attention has been given to the predictive 156 

performance of trend modelling. A simple explanation might lie in the fact that in many 157 

environmental studies trends have been employed as descriptors of changes or causal effects, and 158 

less as models for predictions, in spite of the fact that they strongly communicate expectations 159 

for the future by suggesting causal mechanisms (e.g. Fig. A2 on the combined use of the word 160 

‘trends’ and ‘projections’). The second reason could be related to the scarcity for long-term 161 

environmental data for out-of-sample validation. Therefore, our aim is to assess the relevance of 162 

long-term trend modelling in terms of point prediction, not examining elements of stochastic 163 

prediction and categorically, not engaging in the identification of a ‘true’ model for the data. We 164 

deem that this shift in point-of-view may provide contrasting insights to current literature with 165 

respect to the relevance of trends for operational applications.  166 

3.2 Out-of-sample validation schemes  167 

Cross-validation techniques are a systematic way to assess predictive power (Stone, 1974; 168 

Simonoff, 2012). The procedure typically entails multiple runs of validation schemes on random 169 

partitions of the original dataset and summarizes the model skill from the sample of all validation 170 

scores. Standard cross-validation is not straightforward to apply for timeseries data where the 171 

order of the data must be respected. Instead the use of a ‘holdout’ set for validation is frequently 172 

applied, e.g. in hydrology this is done by reserving some data for validation, while the rest are 173 

used for calibration (Klemeš, 1986). We consider an alternative approach respecting the data 174 
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order, by performing calibration and validation in moving-window partitions of the original 175 

dataset, that constantly shift forward in time till the end of the record is reached. This approach is 176 

known as ‘walk-forward’ analysis in the field of econometrics (Kirkpatrick II and Dahlquist, 177 

2010), and it is advantageous in that instead of a single measure of out-of-sample performance 178 

obtained by the ‘split-sample’ approach, a set of values is obtained, which can be statistically 179 

analysed.  Further, it compensates for hindsight bias providing realistic estimates of historical 180 

predictability of changes by a given model. The statistics of the models’ past performance can be 181 

considered a proxy of its future performance.  182 

3.2.1 Static calibration and validation 183 

We apply this type of analysis to the rainfall records by formulating two distinct calibration-184 

validation schemes, which are illustrated in Fig. 2. In the first (Fig.2a) we evaluate the models’ 185 

performance in capturing the variability of the recent 30-year period of each station based on 186 

calibration on the prior 30-year period. By this ‘static validation’ scheme we intend to evaluate 187 

whether extremes have changed in a consistent manner in the second half of the 20th century, as 188 

they are commonly assumed. We also examine the performance of the models in backward 189 

validation, i.e. in predicting observations occurring before the calibration period (Fig. 2a). In 190 

order to maximize the exploitation of the length of each record, we apply this evaluation to the 191 

most recent period of each station, even if the final dates of all records do not coincide. We 192 

favour separate treatment of each station, since our focus is placed on the operational 193 

exploitation of records for predictive purposes and less on a summary of the results for a specific 194 

time period. However, the majority of the records span the whole 20th century, and extend 195 

beyond, with a few exceptions that are mentioned in Table A1. 196 

3.2.2 Dynamic calibration and validation  197 
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The second scheme (Fig.2b) focuses on the historical performance of the models by the 198 

‘dynamic’ (else, ‘walk-forward’) validation scheme introduced before. It assumes a hypothetical 199 

observer moving in time and making predictions for the future 30-year period updating the 200 

models as access to new information progressively becomes available. We formulate two 201 

different schemes for making these predictions. In the first, which we call block-moving 202 

calibration and validation, the models are calibrated on 30-year periods and validated by the next 203 

‘unobserved’ 30 years, and this procedure is repeated by rolling the calibration and validation 204 

origin in time (Fig.2bi). New information is gradually taking the place of the past information, 205 

which is discarded by the 30-year sliding windows. The start of the first moving-window 206 

coincides with the start of each station, while the start of the last calibration moving-window is 207 

59 years prior to the end of the station, so that 30 years of validation data remain available. This 208 

last validation window is the recent 30-year window that is exploited for validation in the static 209 

scheme (Fig. 2a). The second scheme of the dynamic validation, which we call global-moving, 210 

validates the models using sliding 30-year periods, exactly as in the prior scheme, but calibrates 211 

the models on the whole available record, that is known at each time step to the observer. 212 

Therefore, the origin of the calibration window remains stable, but the window gradually extends 213 

in length as more data are assimilated in the model, while no data are discarded (Fig.2bii). This 214 

scheme explores the potential of employing all available information to make a prediction for the 215 

future. Since the validation periods are the same in both schemes, results between the two can be 216 

directly compared.  217 

 218 

 219 
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 220 

Figure 2. Explanatory sketch showing the two calibration and validation schemes (a. Static 221 

Validation and b. Dynamic Validation) for an example station. 222 

For the evaluation of the candidate models we estimate the Root Mean Square Error, a standard 223 

and established metric of goodness of fit (Sharma et al., 2019). The RMSE is defined as the 224 

square root of the mean square error of the predicted values �̂�𝑖 with respect to the observed xi:   225 

RMSE = √
∑ (�̂�𝑖 − 𝑥𝑖)2
𝑛
𝑖=1

𝑛
 (1) 

where n is the length of the data. We present the sample RMSE distribution of the models for 226 

each station and we summarize the results by computing the average RMSE for each station and 227 

its standard deviation. For the longest uninterrupted record of the station, we present a 228 

comprehensive analysis including the temporal propagation of the errors. 229 

 230 
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3.3 Predictive models  231 

Let xi be a stochastic process in discrete time i, i.e. a collection of random variables xi, and 232 

x:= (x1, …, xn) a single realization (observation) of the latter, i.e. a timeseries. We assume that in 233 

time i ≤ n the hypothetical observer makes a forecast based on a subset of the historical 234 

information. Namely from the entire available information that we have (the observed sample 235 

(x1, …, xn)) we assume that the hypothetical observer knows only the subseries x = (x1, …, xi).  236 

To predict the unobserved periods, past or future, we employ two model structures. The 237 

first is the typical linear trend model, encompassing two parameters, a slope 𝑏 and an intercept 𝑎, 238 

whose mean 𝜇 is a deterministic linear function of time t: 239 

𝜇(𝑡) = 𝑎 + 𝑏𝑡 (2) 

The trend model is fitted via least-squares regression. Robust fitting techniques are also 240 

explored, namely median quantile regression (Koenker and Hallock, 2001) and the Theil-Sen 241 

slope estimation (Sen, 1968; Theil, 1992), but they did not yield better predictions, and hence, 242 

the least-squares approach, which is also more rigorous in theoretical terms (e.g. Papoulis, 1990), 243 

was retained. For details of the application and discussion on the results, the reader is referred to 244 

the analysis presented in Appendix III.  245 

The second model considered is the mean model, including only one parameter, the mean 246 

of the present climatic period, extrapolated to the unobserved periods: 247 

𝜇(𝑡) = 𝑎 (3) 

According to the followed calibration scheme, fitted to block-moving (local) 30 years or to all 248 

the known (global) period, the trend model is termed local trend (L-Trend) and global trend (G-249 

Trend), respectively, and likewise, the mean model, is termed local mean (L-Mean) and global 250 

mean (G-Mean). In the local models, the period [i – 59, i – 30] is used for calibration and the 251 
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[𝑖 –  29, 𝑖] for validation, while in the global models, the period [1, i –30] is used for calibration 252 

and the [i – 29, i] period for validation as in the former scheme. We note that these two 253 

seemingly simplistic predictive models, i.e. the linear model fitted with least-squares and local 254 

average, can be found in a variety of theoretical results in statistical sciences, for instance use of 255 

(temporally) local data constitutes a central concept in the k-nearest neighbours technique, as 256 

discussed in Hastie et al. (2005), as well as in local regression as discussed in Chandler and Scott 257 

(2011). 258 

3.4 Selected indices of rainfall extremes and quality control 259 

We examine four statistical indices of rainfall: annual maxima (AM), annual totals (AT), annual 260 

wet-day average rainfall (WDAV) and probability dry (PD) also computed at the annual scale. 261 

As wet, we consider any day with rainfall surpassing the threshold of 1 mm, while values below 262 

this threshold are counted as dry days taken into account for the PD estimation. We employ the 263 

following criteria for missing values. For the annual maxima we use a methodology proposed by 264 

Papalexiou and Koutsoyiannis (2013), according to which an annual maximum in a year with 265 

missing values is not accepted if (a) it belongs to the lowest 40% of the annual maxima values 266 

and (b) 30% or more of the observations for that year are missing. For the rest of the indices, we 267 

do not compute the yearly index in years with more than 15% of missing values. In general, most 268 

records have low percentages of missing values (Table A1), which in most cases are clustered in 269 

the beginning of the records. A few records have consecutive missing periods which might imply 270 

a change of instrumentation or relocation of the gauge. To avoid possible artefacts in trend 271 

estimation in static validation (in backward validation) that may arise from such cases, we 272 

analyze periods containing less than 5% of consecutive missing values of the yearly indices. For 273 
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the dynamic calibration and validation scheme, we fit the models only if there exist at least 27 274 

valid indices in each of the 30-year periods of calibration and validation. 275 

 276 

3.5 Predictability of climatic changes under natural variability 277 

In order to understand the predictive performance of the considered models under typical 278 

conditions of natural variability, we run similar experiments with synthetic timeseries 279 

reproducing increasing degrees of persistence. We recall that persistence, also known as Hurst-280 

Kolmogorov dynamics, is associated with enhanced natural variability at all scales 281 

(Koutsoyiannis, 2003), which in turn implies increased unpredictability at large time horizons, 282 

with some potential for predictability at short time steps due to the presence of temporal 283 

clustering (Dimitriadis et al., 2016). This provides a scientifically relevant comparison to the 284 

empirical data as rainfall series are known to exhibit mild to moderate degree of persistence (e.g. 285 

Iliopoulou et al., 2018b; Iliopoulou and Koutsoyiannis, 2019). Moreover, segments of persistent 286 

series resemble trends and can easily be misinterpreted as such (Cohn and Lins, 2005).  287 

Therefore, we examine the comparative predictive performance of the four models for 288 

persistent processes, where long-term changes are the rule (Serinaldi and Kilsby, 2018), and the 289 

effect of available record length on the quality of the model predictions. The latter becomes 290 

relevant in the global-moving scheme, in which the calibration period varies in length.  291 

4. Results 292 

4.1 Models’ performance in static validation 293 

Results from the performance of the local mean and local trend models on the last 30 years of 294 

each station, as well as on the years preceding the 30-year calibration, are shown in Figure 3 for 295 
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all studied indices. The local mean model performs on average better than the local trend model 296 

for all indices in capturing their most recent changes of extremes, while the performance of the 297 

local trend deteriorates considerably with respect to hindcasting the past. Interestingly, the larger 298 

discrepancies of the trends —both in future and past validation periods, are encountered in the 299 

annual maxima, followed by probability dry. In most of the opposite cases, of trends showing a 300 

better performance, the fitted slope is very mild, thus hardly differing from the local mean. A 301 

visual examination of the plots of the 60 long-term stations, provided in the Appendix figures 302 

(A4-A7), suggests a positive answer to the opening question, providing empirical evidence that 303 

climatic trends fluctuate and in fact, abruptly reverse. 304 
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 305 

Figure 3. Boxplots of the RMSE distribution from the static validation application to all stations, 306 

for the local mean (L-Mean) and local trend (L-Trend) models, for all rainfall indices. The band 307 

inside the box reports the median of the distribution, the lower and upper ends of the box 308 

represent the 1st and 3rd quartiles, respectively, and the whiskers extend to the most extreme 309 

value within 1.5 IQR (interquartile range) from the box ends; outliers are plotted as points.  310 

 311 

4.2 Moving-window validation of predictive performance  312 

In this section, we explore the predictive qualities of the models by delving into the statistical 313 

analysis of the whole record, considering the models from the global-moving calibration as well, 314 

namely, the global trend and the global mean.  315 

4.2.1 An examination of one of the longest records 316 
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As an illustration of the application of the methodology, we first explore the longest 317 

uninterrupted station of our dataset, i.e. the Prague station in Czech Republic (211 years), shown 318 

in Figure 4. The error propagation pattern of the models is reflective of their performance. For 319 

the majority of time, the mean models are at the lower front of the errors, with the local mean 320 

model showing slightly superior performance. The local linear trend model results in higher 321 

errors and its predictions may quickly deteriorate, taking longer to converge to the mean models 322 

in areas of lower errors (Fig. 4). This is attributed to the fact that the trend model projects 323 

sensitive features of the calibration period, i.e. extreme observations or ‘trendy’ behaviour, 324 

which do not have a high chance to survive the end of the calibration sample. The more 325 

parsimonious structure of the mean model encapsulates minimal but robust knowledge of the 326 

process behaviour, which is more likely to characterize its future evolution as well. In the 327 

absence of an underlying global trend and as the sample grows larger, the global trend model 328 

converges to the predictions of the mean models, but its performance remains slightly inferior 329 

even towards the end of the record. 330 
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 331 

Figure 4. Case study of the rainfall station in Prague. Timeseries of annual maxima, annual 332 

totals, annual wet-day average and annual probability dry, error propagation and distribution of 333 

the prediction RMSE for the four prediction models, global and local trend, and global and local 334 

mean. 335 

 336 

4.2.2 Application to all records 337 

Figures 5-8 show all 60 stations’ empirical distributions of the predictive RMSE of each of 338 

model and rainfall index. For most stations the local mean and global mean models have the 339 

lower probabilities of exceeding high errors, contrary to the local trend model whose error 340 

distribution is clearly shifted to the left, in the higher error area. The distribution of the predictive 341 

RMSE of global trend model is located in between the two, showing in general a better 342 

behaviour than the local trend.  343 
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  344 

 345 

Figure 5. Empirical cumulative distribution function (ECDF) for the prediction RMSE of annual 346 

maxima for the local trend, the global trend, the global mean and the local mean model for the 60 347 

stations.  348 

 349 
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 350 

Figure 6. Empirical cumulative distribution function (ECDF) for the prediction RMSE of annual 351 

totals for the local trend, the global trend, the global mean and the local mean model for the 60 352 

stations.  353 

 354 
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 355 

Figure 7. Empirical cumulative distribution function (ECDF) for the prediction RMSE of wet-356 

day average rainfall for the local trend, the global trend, the global mean and the local mean 357 

model for the 60 stations.  358 

 359 
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 360 

Figure 8. Empirical cumulative distribution function (ECDF) for the prediction RMSE of 361 

probability dry for the local trend, the global trend, the global mean and the local mean model for 362 

the 60 stations.  363 

A summary of the distributional properties of the prediction RMSE of Fig. 5-8, is provided 364 

in Fig. 9, in terms of the average and the standard deviation of the RMSE distribution of each 365 

station. Accordingly, the models’ performance can be ranked from best to worse as follows: (1) 366 

local mean, (2) global mean, (3) global trend and (4) local trend. The local mean model 367 

marginally outperforms the global mean with respect to the average RMSE, yet in terms of the 368 
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standard deviation of the RMSE distribution, it is evident that the local mean model prevails. In 369 

this case, the linear trend model shows markedly inferior performance. The sample distribution 370 

of the average RMSE and the standard deviation of RMSE from each station’s distribution is 371 

shown in Fig.9, with the average values of the latter also summarized in Table 1. 372 
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 373 

Figure 9. Boxplots of the average RMSE and standard deviation of RMSE as estimated for each 374 

station from moving window application of the local (L-) mean, global (G-) mean and local (L-) 375 

and global (G-) trend for all the indices. The band inside the box reports the median of the 376 

distribution, the lower and upper ends of the box represent the 1st and 3rd quartiles, respectively, 377 

and the whiskers extend to the most extreme value within 1.5 IQR (interquartile range) from the 378 

box ends; outliers are plotted as points. 379 
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Table 1 Averages of the average RMSE and the standard deviation of RMSE of the four models 380 

(local (L-) mean, global (G-) mean, local (L-) trend and global (G-) trend) from all stations and 381 

for all four indices, as shown in Figure 9.  382 

  Annual Maxima    Annual Totals  

 L-mean G-mean G-trend L-trend L-mean G-mean G-trend L-trend 

Average 

RMSE 

16.00 16.05 16.73 18.76 149.07 154.18 154.77 174.7 

St. Dev. 

RMSE 

3.04 3.13 3.37 4.74 21.52 23.02 27.4 45.45 

Wet-Day Average  Probability Dry   

 L-mean G-mean G-trend L-trend L-mean G-mean G-trend L-trend 

Average 

RMSE 

0.98 1.01 1.11 1.2 0.04 0.05 0.05 0.05 

St. Dev. 

RMSE 

0.18 0.18 0.27 0.39 0.01 0.01 0.01 0.02 

 383 

4.3 Models’ performance under natural variability  384 

4.3.1 An experiment with synthetic series 385 

Following the rationale outlined in Section 3.5, the goal of this experiment is to test the 386 

predictive models in conditions of enhanced structured uncertainty, characterized by changes at 387 

all scales and ‘trend-like’ behaviour for small periods. As the latter are distinctive features of 388 

persistent processes (Koutsoyiannis, 2002), we produce five long-term timeseries from a 389 

standard normal distribution with length N = 10 000 that reproduce HK dynamics, using the 390 

SMA algorithm (Koutsoyiannis, 2000; Dimitriadis and Koutsoyiannis, 2018). The series are 391 

generated with increasing degree of persistence, quantified through the Hurst parameter H, from 392 

mild persistence H = 0.6 to very strong H = 0.99. In order to explore the impact of record length 393 

we also examine smaller segments of the same timeseries of lengths N = 100 and N = 1000. 394 
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Because smaller segments are impacted by larger estimation uncertainty, we plot the average 395 

ECDF of non-overlapping segments extracted from the original timeseries of length N = 10 000. 396 

Therefore, the N = 100 plots correspond to the average of 100 timeseries of length 100, derived 397 

from the 10 000 series. Likewise, the N = 1000 series are the average of 10 timeseries of length 398 

1000. The plots of the ECDF distribution (Fig.10) of the prediction RMSE for the four prediction 399 

models are produced employing the dynamic validation schemes applied for the real-world 400 

stations.  401 

The contrasting performance of the two local models is observed here as well; local 402 

features are better exploited by the mean rather than the trend model, irrespectively of the record 403 

size. The latter becomes important when the global models are considered. In the absence of a 404 

global underlying trend, the increased variability encountered in small calibration samples (N = 405 

100) leads the global trend model to bad predictions.  When the trend model is calibrated from 406 

larger series, the trend component is smoothed out, and therefore, the prediction performance 407 

approaches the one from the mean models. Regarding the competition between global and local 408 

mean, it appears that it is a function of both the record length and degree of persistence. For large 409 

record lengths and H > 0.7, the local mean model prevails, while for small record lengths and 410 

medium persistence, the two are comparable. In persistent process, where clustering arises, local 411 

information is likely to be more relevant for prediction, yet for long-term prediction as is the case 412 

here, ‘local’ may need to extend a few steps back in the past, which for small record lengths 413 

could be within the reach of the calibration period employed for the global mean model. 414 

Obviously though, results from the global model become less relevant when the sample is large 415 

and therefore global information extends too far in the past. A thorough treatment of the 416 
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theoretical basis and practical formulation of local mean models in relation to the persistence 417 

properties of the parent process is given by Koutsoyiannis (2020).   418 

We note that the behavior observed in the N=100 plots is qualitatively consistent with the 419 

one observed from the rainfall records. Moreover, indices known for their persistence properties, 420 

such as annual totals  (Iliopoulou et al., 2018b; Tyralis et al., 2018) and probability dry 421 

(Koutsoyiannis, 2006) show a slight preference for the local mean model, while others where 422 

persistence is less manifested, as annual maxima (Iliopoulou and Koutsoyiannis, 2019) the 423 

performance of the global and the local mean model in terms of the average RMSE are 424 

indistinguishable (Fig. 9); still the variance of the errors being smaller for the latter. 425 
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 426 

Figure 10. Empirical cumulative distribution function (ECDF) for the prediction RMSE of the 427 

HK timeseries resulting from application of the local trend, the global trend, the global mean and 428 

the local mean model, for segments of the original timeseries with increasing sample size, N 429 

=100, 1000, 10 000 (original).  The ECDF for the first two lengths are the averages as computed 430 

from 100 and 10 non-overlapping segments of the 10 000 values.  431 

 432 
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4.3.2 A discussion on parsimony and predictive accuracy 433 

In the above controlled experiment, where the generating mechanism of the data is known, it is 434 

evident that among the four ‘false’ models, the local mean yields the most accurate predictions in 435 

terms of RMSE, using in-sample data more efficiently by means of its single parameter. The 436 

increase in predictive accuracy and statistical efficiency is tightly associated with the notion of 437 

parsimony, which is a dual criterion measuring the model’s fit to the data as well its simplicity  438 

(Gauch, 2003). In these terms, the local mean model is deemed to be a parsimonious model, 439 

since it fits the out-of-sample data either better or at least equally well to the more complicated 440 

trend model.  441 

The reason behind the  sometimes interchangeable use of the words parsimony and 442 

simplicity, is a certain tendency of simple models to make reliable predictions, which among 443 

other approaches, is also incorporated as a concept in Bayesian analysis assigning higher prior 444 

probabilities to simpler models, and a posteriori favouring the simpler model (Berger and 445 

Bernardo, 1992; Berger and Pericchi, 1996; Gauch, 2003 and references therein). Another 446 

demonstration of the relation between predictive accuracy and simplicity is the possibly better 447 

predictive performance in terms of mean square error of simpler, yet misspecified models, 448 

compared to the ones derived from the correctly structured model (Hocking, 1976); for instance, 449 

Wu et al. (2007) provided a set of conditions for which this holds true in the case of linear 450 

models. Therefore, theoretical arguments are in favour of simpler predictive models, all the more 451 

so in the case of natural processes characterized by great degree of variability, for which our 452 

understanding is limited. A comprehensive discussion on the connection of simplicity to wider 453 

epistemological and philosophical principles is provided in Gauch (2003). 454 
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5. Summary and conclusions 455 

A considerable deal of contemporary research in hydrology revolves around the study of 456 

temporal changes of extremes, with the application of trend analyses being on the rise during the 457 

past two decades (as illustrated in Appendix I). While the explanatory analysis of trends has 458 

dominated the relevant studies, assessment of the predictive value of trend models has not been 459 

equally assessed, despite the apparent significance of such a task for risk planning. This research 460 

reframes the problem of trend evaluation, as a model selection problem oriented towards 461 

identifying the model with the best predictive qualities in deterministic terms, which is neither 462 

equivalent to the ‘true’ model nor to the model better at explaining the in-sample data.  463 

For this purpose, we introduce a systematic framework for evaluating projections of trends 464 

by means of comparing the prediction RMSE to the one obtained from simple mean models. We 465 

perform a variation of cross-validation, also known as walk-forward analysis, devising two 466 

distinct calibration and validation schemes (Fig. 2). In block-moving calibration we fit the linear 467 

trend and mean models to 30 years of data (local trend and local mean) and we validate the 468 

results based on the outcome of their predictions for the next 30 years, repeating the procedure 469 

using sliding windows, till the end of the record is met. In global-moving calibration, we fit the 470 

models to all the known period (global trend and global mean), assuming that in the beginning, 471 

one knows only the first 30 years, and progressively the calibration sample grows larger. In this 472 

case too, we evaluate the outcome of the predictions of the models for the next 30 years, 473 

therefore the projections of the four models can be compared in terms of the statistics of their 474 

empirical distribution of errors. 475 

The models compete in predicting the out-of-sample behaviour of four rainfall indices: 476 

annual maxima, annual totals, annual wet-day average rainfall and probability dry at the annual 477 
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scale, as estimated from a unique dataset comprising the 60 longest rainfall records surpassing 478 

150 years of daily data. Results show that models rank from best to worst as follows: local mean, 479 

global mean, global trend and local trend. A separate examination of the latest 30-year period is 480 

also performed in order to track the predictive performance of recent trends. This analysis 481 

confirmed the above rank of the models as well. Results from both analyses show that future 482 

rainfall variability is better predicted by mean models, since local trend models identify features 483 

of the process that are unlikely to survive the end of the calibration sample, either being extreme 484 

observations, or ‘trend-like’ behaviour. These features are smoothed out in longer segments, 485 

which is the reason behind the better performance of global trends. Robust regression techniques 486 

were also employed for the calibration of local trends but perhaps not surprisingly, did not 487 

improve the out-of-sample predictions (see discussion in Appendix III).  488 

In an attempt to reproduce the observed behaviour, we generate long-term timeseries 489 

exhibiting long-term persistence or HK dynamics (Koutsoyiannis, 2011; O’Connell et al., 2016; 490 

Dimitriadis, 2017), and carry out the same analysis. Persistent processes show enhanced 491 

variability and a user unfamiliar with their properties may misinterpret segments of their 492 

timeseries as trends, which perhaps explains why trend claims have been that common lately. 493 

Results from the synthetic records show qualitative similarities with the ones from empirical 494 

rainfall records, known to have persistence, depending on the scale and studied index 495 

(Koutsoyiannis, 2006; Markonis and Koutsoyiannis, 2016; Iliopoulou et al., 2018b; Iliopoulou 496 

and Koutsoyiannis, 2019). The local and global mean outperform the local trend model for all 497 

degrees of persistence and sample sizes, while for small samples (N=100) the performance of the 498 

global trend model is notably inferior too. Local and global mean models hardly show 499 

differences for medium degrees of persistence, but the local mean prevails for strong persistence. 500 
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From a systematic investigation of long-term rainfall records, corroborated by simulation 501 

results, we have verified that local trends have poor out-of-sample performance, being 502 

outperformed in their predictions by simpler models, as the local mean. This empirical finding 503 

suggests that the large inherent variability present in the rainfall process makes the practice of 504 

extrapolating local features in the long-term future dubious, especially when the complexity of 505 

the latter increases. This in turn questions the theoretical and practical relevance of projections of 506 

rainfall trends and the grounds of the related abundant publications. 507 
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Appendix 754 

I. A brief quantitative literature review 755 

The aim of this literature review is to evaluate the academic interest in trends of rainfall variables 756 

by means of a quantitative analysis of research papers appearing in Google Scholar. We base this 757 

analysis on the quantification of the occurrence of associated words in Google Scholar using 758 

Python code developed by Strobel (2018), omitting results related to citations and patents. This 759 

analysis was performed on 21/10/2019 and in order to refer to full calendar years it contains 760 

results published till the end of 2018. 761 

 In Fig. A1, we show the temporal evolution of the ratio of appearance of the word ‘trends’ 762 

in items also containing the complete list of words [‘precipitation’, ‘hydrology’, ‘extremes’]. 763 

Results have been randomly varying from the beginning till the mid 20th century, when there 764 

were less than 100 results per year fulfilling the criteria of containing the list in the denominator 765 

of the ratio. It can be seen though that approximately from the 1960 and later on there has been 766 

an increasing trend of publications containing the word ‘trends,’ reaching 89% in 2018. 767 

Obviously, results belonging to a different context than the one assumed might have been 768 

calculated as well but we assume their effect to be analogous both in the nominator and the 769 

denominator of the ratio, thus not significantly affecting the conclusion. 770 
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 771 

Figure A1. Temporal evolution along with three-year moving average of the ratio of the 772 

occurrence of the word ‘trends’ in Scholar items containing the words ‘precipitation’, 773 

‘hydrology’ and ‘extremes’. 774 

 To further refine our search to more technical papers explicitly referring to rainfall trends 775 

we define the following search items. Word combination A is the full list [‘precipitation|rainfall 776 

trends’, ‘precipitation|rainfall data|records’], where the symbol | refers to ‘or’, and word 777 

combinations inside ‘’ should be found together, i.e. one possible combination is the list 778 

[‘precipitation trends’, ‘rainfall data’]. Word combination B is an extension of word combination 779 

A that also includes the word ‘projections’, while word combination C is an extension of word 780 

combination A also including the word sequence ‘linear trend|trends|model|regression’. The 781 

absolute numbers of the results are shown in Fig. A2a, while in Fig.A2b we show their relative 782 

ratio. Expectedly, the total number of studies containing rainfall trends are rising, however this is 783 

not surprising in terms of absolute numbers, considering the increasing availability of papers in 784 

Scholar over the years. However, the use of the word ‘projections’ appears to be increasing in 785 

relative terms as well. The rate of word use in relation to the linear trend (C) has slightly 786 
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increased too over the years, stabilizing over the past 5-year period to approximately half of the 787 

related publications (Fig.A2b). 788 

 789 

Figure A2. (a) Temporal evolution of the occurrence of the word combinations A, B and C and 790 

their relative ratio (b). 791 

As a final refinement, we consider words appearing only in the title of papers, which 792 

should limit the results to strictly related papers. Results are shown in Fig. A3. The standard term 793 

that is contained in every result is ‘rainfall|precipitation’ followed by the appearance, anywhere 794 

in the title, of the single terms, trends|trend, variability, change|changes, and non-stationary|non-795 

stationarity|nonstationary|nonstationarity. Note that we consider also plural terms where 796 

applicable, as well as possible differences in spelling, while this time, we do not require words to 797 

be found in a specific order as in the previous in-text search (for instance, it could be “trends in 798 

rainfall...” or “rainfall trends in the..”). We do not compute ratios over the items containing in 799 

their title the words ‘rainfall|precipitation’ because these terms alone are too generic, and can be 800 

found in a variety of studies, a significant part of which are only loosely related to hydrology 801 

(e.g. physics, chemistry, radar technologies etc.). Instead, to provide a more relevant reference 802 

point for comparison, we use two words semantically ‘uncharged’ with the trend concept, which 803 



42 

 

are however widely used in combination with the standard terms, namely the words ‘model’ and 804 

‘distribution’ (e.g. “a rainfall model…” or “the distribution of the … precipitation”).  805 

Apparently, the conceptually more inclusive terms ‘changes’ and ‘variability’ are ranking 806 

first in the related search terms, with the explicit use of the word ‘trend(s)’ ranking third, 807 

yielding consistently over the last ten years above 200 results per year (288 in 2018, as per 808 

results appearing on Google Scholar on 21/10/2019). Terms related to non-stationarity are slowly 809 

rising over the past ten years (39 in-title results in 2018), while being close to zero before 2000. 810 

It is interesting to note the evolution of the use of terms explicitly associated with the temporal 811 

properties of rainfall compared to the terms more related to marginal properties (‘distribution’), 812 

or being more of a general use, perhaps implying both properties (‘model’). The mere use of the 813 

word ‘trend(s)’ has exceeded the use of an all-times classic word for rainfall, i.e. distribution, 814 

which clearly shows a certain shift in academic interest. Likewise, the ever higher-scoring word 815 

‘model’ has been outnumbered in the past three years by the word ‘change(s)’.  816 

 817 

Figure A3. Temporal evolution of the occurrence of the word combinations in titles of Scholar 818 

items. 819 
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In conjunction, these results suggest that over the last two decades, there has been a rising 820 

scientific interest in the temporal properties of rainfall and their future evolution, with ‘trends’ 821 

taking up a considerable share of this emerging focus. 822 

 823 

II. Rainfall records properties and long-term variability 824 

Table 1 summarizes the properties of the long-term rainfall stations. In Fig A4-A7, we illustrate 825 

the static validation scheme showing results from the projections of the local trend and the local 826 

mean model for all rainfall indices. 827 
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Table A1. Properties (name, source, latitude, longitude, start year, end year, record length and 828 

missing values percentage) of the 60 longest stations used in the analysis sorted by decreasing 829 

length. For the global datasets, the European Climate Assessment dataset (ECA; 830 

http://www.ecad.eu ) and the Global Historical Climatology Network Daily database (GHCND; 831 

https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3), 832 

the station identifier is also reported. Asterisks (*) in the “end year” column denote data that 833 

have been continued from a second source. The country of each station is abbreviated in 834 

parentheses aside its name. 835 

http://www.ecad.eu/
https://data.noaa.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-3
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NAME SOURCE LAT LON START 

YEAR 

END 

YEAR 

RECORD 

LENGTH 

MISSING 

% 

PADOVA (IT) Marani and Zanetti (2015) 45.87 11.53 1725 2013 289 5.04 

CHUK-WOO-KEE, SEOUL (KR) Jhun and Moon (1997) and Korea 

Meteorological Agency 

37.53 127.02 1777 2017* 241 0.00 

HOHENPEISSENBERG (DE) ECA: 48 HOHENPEISSENBERG 

DE 

47.80 11.01 1781 2017 237 25.56 

PALERMO (IT) GHCND:ITE00105250 38.11 13.35 1797 2008 212 17.16 

PRAGUE (CZ) Czech Hydrometeorological 

Institute 

50.05 14.25 1804 2014 211 0.20 

BOLOGNA (IT) GHCND:ITE00100550 and Dext3r 

of ARPA Emilia Romagna, Rete di 

monitoraggio RIRER 

(http://www.smr.arpa.emr.it/dext3r/) 

44.50 11.35 1813 2018* 206 0.00 

JENA STERNWARTE GM (DE) GHCND:GM000004204 50.93 11.58 1826 2015 190 5.47 

RADCLIFFE (UK) Radcliffe Meteorological Station  

(Burt and Howden, 2011) 

51.76 -1.26 1827 2014 188 0.05 

UPPSALA (SE) Department of Earth Sciences of the 

Uppsala University 

59.86 17.63 1836 2014 179 0.02 

TORONTO (CA) GHCND:CA006158350 43.67 -79.40 1840 2015 176 5.97 

GENOA (IT) GHCND:ITE00100552 44.41 8.93 1833 2008 176 0.00 

ONNEN (NL) ECA :2491 ONNEN NL 53.15 6.67 1846 2018 173 1.10 

SAPPEMEER (NL) ECA:2507 SAPPEMEER NL 53.17 6.73 1846 2018 173 1.10 

WOLTERSUM (NL) ECA:2553 WOLTERSUM NL 53.27 6.72 1846 2018 173 1.14 

GRONINGEN (NL) ECA:147 GRONINGEN NL 53.18 6.60 1846 2018 173 1.10 

RODEN (NL) ECA:516 RODEN NL 53.15 6.43 1846 2018 173 1.10 

 EELDE (NL) ECA:164 EELDE NL 53.12 6.58 1846 2018 173 1.10 

HELSINKI (FI) Finnish Meteorological Institute 60.17 24.93 1845 2015 171 0.33 

MANTOVA (IT) GHCND:ITE00100553 45.16 10.80 1840 2008 169 5.75 

DEN_HELDER (NL) ECA:146 DEN_HELDER NL 52.93 4.75 1850 2018 169 1.13 

 DE_KOOY (NL) ECA:145 DE_KOOY NL 52.92 4.78 1850 2018 169 1.13 

ANNA_PAULOWNA (NL) ECA:521 ANNA_PAULOWNA 

NL 

52.87 4.83 1850 2018 169 1.13 
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CALLANTSOOG (NL) ECA:2382 CALLANTSOOG NL 52.85 4.70 1850 2018 169 1.13 

RITTHEM (NL) ECA:2503 RITTHEM NL 51.47 3.62 1854 2018 165 1.16 

VLISSINGEN (NL) ECA:166 VLISSINGEN NL 51.44 3.60 1854 2018 165 1.16 

SCHOONDIJKE (NL) ECA:572 SCHOONDIJKE NL 51.35 3.55 1854 2018 165 1.16 

'S_HEERENHOEK (NL) ECA:2350 'S_HEERENHOEK NL 51.47 3.77 1854 2018 165 1.16 

BRESKENS (NL) ECA:2377 BRESKENS NL 51.40 3.55 1854 2018 165 1.16 

MIDDELBURG (NL) ECA:2474 MIDDELBURG NL 51.48 3.60 1854 2018 165 1.16 

ARMAGH (UK) GHCND:UK000047811 54.35 -6.65 1838 2001 164 0.26 

OXFORD (UK) GHCND:UK000056225 51.77 -1.27 1853 2015 163 0.42 

HVAR (HR) ECA:1686 HVAR HR 43.17 16.45 1857 2018 162 7.74 

MELBOURNE REGIONAL 

OFFICE (AS) 

GHCND:ASN00086071 -37.81 144.97 1855 2015 161 1.29 

STYKKISHOLMUR (IS) Icelandic Meteorological Office 65.08 -22.73 1856 2015 160 1.00 

GRYCKSBO_D (SE) ECA:6456 GRYCKSBO_D SE 60.69 15.49 1860 2018 159 0.62 

FALUN (SE) GHCND:SW000010537  60.62 15.62 1860 2018 159 0.89 

VAEXJOE (SE) GHCND:SWE00100003 56.87 14.80 1860 2018 159 4.13 

FLORENCE (IT) Regional Hydrologic Service of the 

Tuscany Region 

43.80 11.20 1822 1979 158 2.00 

SYDNEY OBSERVATORY 

HILL (AS) 

GHCND:ASN00066062 -33.86 151.21 1858 2015 158 0.48 

DENILIQUIN WILKINSON ST 

(AS) 

GHCND:ASN00074128  -35.53 144.95 1858 2014 157 1.37 

ZAGREB GRIC (HR) GHCND:HR000142360  45.82 15.98 1860 2015 156 1.54 

ROBE COMPARISON (AS) GHCND:ASN00026026  -37.16 139.76 1860 2015 156 3.66 

GABO ISLAND LIGHTHOUSE 

(AS) 

GHCND:ASN00084016  -37.57 149.92 1864 2018 155 3.36 

NEWCASTLE NOBBYS 

SIGNAL STATIO (AS) 

GHCND:ASN00061055 -32.92 151.80 1862 2015 154 2.55 

OVERVEEN (NL) ECA:2497 OVERVEEN NL 52.40 4.60 1866 2018 153 1.25 

HOOFDDORP (NL) ECA:151 HOOFDDORP NL 52.32 4.70 1866 2018 153 1.25 
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 836 

 837 

 838 

 839 

ROELOFARENDSVEEN (NL) ECA:540 ROELOFARENDSVEEN 

NL 

52.22 4.62 1866 2018 153 1.29 

SCHIPHOL (NL) ECA:593 SCHIPHOL NL 52.32 4.79 1866 2018 153 1.25 

AALSMEER (NL) ECA:2351 AALSMEER NL 52.27 4.77 1866 2018 153 1.25 

HEEMSTEDE (NL) ECA:2430 HEEMSTEDE NL 52.35 4.63 1866 2018 153 1.25 

LIJNDEN_(NH) (NL) ECA:2466 LIJNDEN_(NH) NL 52.35 4.75 1866 2018 153 1.25 

LISSE (NL) ECA:2467 LISSE NL 52.27 4.55 1866 2018 153 1.29 

NIJKERK (NL) ECA:2484 NIJKERK NL 52.23 5.47 1867 2018 152 0.75 

 VOORTHUIZEN (NL) ECA:2542 VOORTHUIZEN N 52.18 5.62 1867 2018 152 0.75 

PUTTEN_(GLD) (NL) ECA: 551 PUTTEN_(GLD) NL 5.62 14.00 1867 2018 152 0.75 

ATHENS (GR) National Observatory of Athens 37.97 23.72 1863 2014 152 0.66 

ELSPEET (NL) ECA:2404 ELSPEET NL 52.28 5.78 1867 2018 152 0.75 

LISBON (PT) Kutiel and Trigo (2014) 39.20 -9.25 1863 2013 151 1.06 

MILAN (IT) GHCND:ITE00100554 45.47 9.19 1858 2008 151 0.12 

NEW_YORK_CNTRL_PK_TWR 

(US) 

GHCND: USW00094728  40.78 -73.97 1869 2018 150 0.51 
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 840 

Figure A4. Local trend vs the local mean in projecting annual maxima for the 60 longest rainfall 841 

stations. 842 
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 849 

Figure A5. Local trend vs the local mean in projecting annual totals for the 60 longest rainfall 850 

stations. 851 
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 857 

Figure A6. Local trend vs the local mean in projecting wet-day average rainfall for the 60 858 

longest rainfall stations. 859 

 860 

 861 
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 864 

 865 
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 866 

Figure A7. Local trend vs the local mean in projecting probability dry for the 60 longest rainfall 867 

stations. 868 

 869 

 870 

 871 

 872 
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III. Fitting algorithms: Least-squares vs robust regression 873 

We explore the effect of the linear trend definition and fitting algorithm on the results of the 874 

local trends, as trends in small segments are expected to be more sensitive to the choice of the 875 

fitting algorithm (Santer et al., 2000). The first algorithm is the widely used ordinary least-square 876 

estimation (OLS), which fits Equation 1 to the data, by minimizing the sum of the squares of the 877 

differences between the observed and those predicted by the linear model. Secondly, two 878 

alternative trend calibration approaches are explored that place less weight on influential 879 

observations (outliers) and thus belong to the range of ‘robust regression’ techniques. The first is 880 

least absolute deviations (LAD), which estimates the regression coefficients by minimising the 881 

sum of absolute deviations of the predicted from the observed values, and can be shown to be a 882 

special case of quantile regression, fitting the trend line to the median of the observations, rather 883 

than the mean (Chandler and Scott, 2011). The second is the non-parametric method of  Theil-884 

Sen slope estimation (Sen, 1968; Theil, 1992), which estimates the slope b of the linear model as 885 

the median of the pairwise slopes of all sample points. Among the different approaches that exist 886 

for the intercept coefficient, we follow Conover (1980) and estimated the intercept as 𝑎 = 𝑦0.5 −887 

𝑏𝑥0.5, where 𝑦0.5 and 𝑥0.5 the sample medians. 888 

Results from the comparison of the prediction RMSE from these three algorithms are 889 

shown in Figure A8. Evidently, the ordinary least square estimator performs better than the LAD 890 

estimation, while its results are very close to the Theil-Sen estimation. Therefore, the OLS 891 

estimator is retained for the main analysis due to its better performance compared to LAD, non-892 

ambiguity in definition compared to the Theil-Sen estimator, and well-studied mathematical 893 

properties (Papoulis, 1990). As a final note, we underline that the notion of ‘robustness’ of 894 

statistical regression has arisen as a positive trait for systems with known and expected 895 

behaviour, where extreme values are considered either ‘outliers’ or erroneous measurements, 896 
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which “contaminate” the record. Yet for natural systems, producing extremes as part of a large 897 

and inherent variability, and exhibiting irregular ‘trends’ difficult or perhaps impossible to 898 

attribute to causal mechanisms, we deem that there might be no theoretical reason behind the 899 

expected superiority of robust statistics, which is in fact empirically shown in this experiment. 900 

 901 

Figure A8. Boxplots of the average RMSE as estimated for each station from moving window 902 

application of the local trend using Least Squares regression (LS), least absolute deviation 903 

regression (LAD) and the Theil-Sen regression. The band inside the box reports the median of 904 

the distribution, the lower and upper ends of the box represent the 1st and 3rd quartiles, 905 

respectively, and the whiskers extend to the most extreme value within 1.5 IQR (interquartile 906 

range) from the box ends; outliers are plotted as points. 907 


