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The use of climate models as a decision tool• There is an increasing demand for 21st century predictions of the climate on a regionalscale, fuelled by concerns about the impact of climate change on water resources.
• Climate models are considered as sophisticated tools able to simulate climatic conditions,not only regarding the future, but also the past and the present (Randall et al., 2007).Despite their extensive use, predictions of future climate based on General CirculationModels (GCMs) continue to be debatable and raise considerable controversies on theargument that their verifiability cannot be proven at the moment.
• Studies which address these subjects are largely based on the performance and theprojections of the GCMs for the 21th  century, whose utility has shifted from generalmitigation policies to site and case-specific water management decisions andhydrological applications (Kundzewicz & Stakhiv, 2010). Extreme events such as floodsand heat waves have displaced the interest of climate models evaluation from monthlyand annual mean values to daily time series evaluation (Frich et al., 2002; Alexander etal., 2006).
• These potential extended uses demand a great level of accuracy at finer spatial andtemporal scales, which is not currently possessed by GCMs. It is generally questionablewhether the general circulation models, which are aimed to reproduce the main climaticfeatures at broad scales, can be adapted to meet these demands.
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The Mediterranean: a hot spot of climate change

Fig. 1: The predictions of climate models are extensively used as a basis for the evaluation of the impact of climate change onwater resources. In this example publication, Garcia-Ruiz et al. (2011) utilize the outcome of model projections in theMediterranean region in order to assess the subsequent changes in water resources and ecosystems. The abstract of thepublication is shown, along with a figure depicting mean annual and winter precipitation changes (P, %) projected for theMediterranean region between 2040-2070 in comparison to 1960–1990 by nine general circulation models.

Amongst all regions, the Mediterranean area is regarded as one of the hot spots of climate change (Giorgi,2006; Diffenbaugh et al., 2007) that is expected to suffer from more intense extreme events.
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Stations used for the point analysis

Stations Country Coordinates -
Elevation

Precipitation Temperature

Years of data Time span Years of
data Time spanAlbacete -Los Llanos Spain 38.95N, -1.85E, 704m - - 105 1901-2010Athens Greece 37.58N, 23.43E, 95m 111 1900-2010 - -Bologna Italy 44.50N, 11.35E, 53m - - 194 1814-2007Dar el Beida Algeria 36.72N, 3.25E, 25m - - 71 1940-2010Hvar Croatia 43.17N, 16.45E, 20m 111 1900-2010 75 1930-2008Istanbul-Goztepe Turkey 40.97N, 29.08E, 33m 77 1929-2004 75 1929-2003Larnaca Cyprus 34.88N, 33.63E, 1m 94 1916-2009 - -Palermo Italy 38.11N, 13.35E, 37m 157 1852-2008 - -Perpignan France 42.73N, 2.87E, 43m 99 1901-1999 108 1901-2010Torrevieja Spain 37.97N, -0.70E, 1m 73 1927-1999 73 1927-1999Tortosa Spain 40.82N, 0.48E, 48m 89 1910-1999 70 1941-2010

The stations were selected based on thefollowing criteria:
• Time series longer than 70 years, having asfew missing data as possible
• Raw data without having been subjected tomodifications
• Even geographical distribution
• Availability of data on the internetSources: http://climexp.knmi.nl/ and National Observatory of Athens

Table 1: Meteorological stations used in the analysis

4

Dar el Beida

Palermo

Athens

Larnaca

Hvar

Istanbul-Goztepe

BolognaPerpignan

Albacete – Los Llanos

Torrevieja

Tortosa

http://climexp.knmi.nl/


Selection of climate modelsThree AR4 models  have been selected (CGCM3, ECHAM5, CSIRO), based on the following criteria:
• Coverage of past periods with adequate length of time series
• Availability of daily temperature and precipitation data on the internetRegarding the simulation runs, the past period up to 2000 was covered by the 20C3M scenario,which spans from the mid-19th to the end of the 20th century.  The first decade of the 21st centurycould not be covered by 20C3M, so outputs for the SRES A2 scenario were chosen instead. TheSRES scenarios depend on assumptions on population growth, economic development andtechnological changes, and they are initialized from the end of the 20C3M scenario.

IPCC
Report Name Developed by

Resolution (o)
in latitude and

longitude

Grid Points,
latitude x
longitude

Years
Scenarios used

20C3M SRES A2

AR4 ECHAM5
Max-Planck Institute for
meteorology & Deutsches
Klimarechenzentrum

1.9 x1.9 96x192 1860-2000  

AR4 CSIRO
Australia's Commonwealth
Scientific and Industrial
Research Organisation

1.9 x1.9 96x192 1871-2010  

AR4 CGCM3-T63
Canadian Centre for Climate
Modelling and Analysis 2.81 X 2.81 64x128 1850-2010  

Sources: http://www.cccma.ec.gc.ca/cgi-bin/data/cgcm3/cgcm3_a2 and https://esg.llnl.gov:8443/index.jspAcknowledgement: The NetCDF files were handled using the Unidata/UCAR software

Table 2: Climate models and scenarios used in the analysis
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Interpolation of climate model outputs for point comparison
• In order to compare the observed time series with the climate model outputs, the four grid points closest to the stationof interest were interpolated.• The Best Linear Unbiased Estimation technique (BLUE) has been successfully used in previous analyses (e.g.Koutsoyiannis et al., 2008; Anagnostopoulos et al., 2010). However, it is suitable only for large time scales  (monthlyand beyond). Specifically, it fails to aggregate the daily gridded time series and smooths out the extreme values.• A non-linear transformation was thus introduced in order to generate the model  interpolated time series, byoptimizing its coefficients. The transformed time series for each grid point is: (1)where xi are the climate model outputs for the four nearest grid points, and α, c are non-negative coefficients.The transformation is used with the BLUE interpolator: (2)

where λi are weighting coefficients , non-negative for physical consistency and λ1+λ2+λ3+λ4 =1 for unbiasedness.Combining the two equations we obtain:
(3)

where is the optimized model interpolated time series of the daily values.Optimization was implemented by minimizing  the error function (4)
where e2 is the mean square error in prediction, and em and es are the errors in prediction of mean value and standarddeviation, respectively. We penalize the difference from mean value and standard deviation by multiplying with alarge number (q); in our study we consider q = 1000.
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Justification of the methodology (1)The employment of this method allows the modelled time series to fit the historical ones as closely as possible, whereasother common methods of spatial interpolation with fixed weights produced larger errors and smaller efficiencies on thebroad scales of the GCM grids (Koutsoyiannis et al., 2008).
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Annual maximum daily high temperature at Perpignan station for the CSIRO model
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Annual maximum daily precipitation at Perpignan station for the CSIRO model
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While the methodology is the same in both variables, decent fitting cannot be achieved in precipitation, due to thesystematic underestimation of  extreme daily rainfall from all models, which is apparent in the gridded data. Consequently,the results of the optimization in that case will still diverge, regardless of the transformation.



Statistical indices of observed time series
• Assuming a rainfall depth threshold of 0.1 mm/day,the probability dry of observed and modelled timeseries was calculated, which allows the inter-comparison of rainfall frequency among the threemodels, as well as a comparison with reality.
• It can be easily observed that all modelssignificantly underestimate the probability dry forthe period of study. The wet days appear to be muchmore frequent than the ones observed in reality.
• Out of the three models, ECHAM5 has the leastrainfall intensity underestimation (reducing theactual probability by appox. 33% on average).
• CGCM3 has the poorest performance, with anaverage reduction of probability dry by 78%.0
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Daily time series Annual maximum time seriesCorrelation Coefficient Efficiency Coefficient Correlation Coefficient Efficiency CoefficientCSIRO ECHAM5 CGCM3 CSIRO ECHAM5 CGCM3 CSIRO ECHAM5 CGCM3 CSIRO ECHAM5 CGCM3Temperature 0.797 0.741 0.801 -7.380 -57.378 -13.176 0.069 0.023 0.039 -1.389 -42.961 -3.467Precipitation 0.040 0.030 0.030 -0.203 -0.241 -0.145 -0.025 -0.018 0.064 -2.224 -1.895 -2.661The performance of the GCMs, quantified by the correlation and efficiency of coefficients*, is poor. The only exception isthe satisfactory correlation of daily temperatures, which indicates that the models capture the annual seasonality of thetemperature variation (but not that of rainfall). It is obvious from the quantitative results that the climate models cannotreproduce the historical time sequence of events. Therefore, even though their nature is deterministic, their functionalitycould be paralleled to a random number generator , which retains (as will be seen next) only some of the statisticalcharacteristics of the observed temperatures.* The correlation and efficiency coefficients are the averages of all the stations.



We fit distribution functions of maxima to the daily annual maximum observed data. The followingdistributions are used:
• Generalized extreme value distribution (GEV)
where κ, ψ, λ are shape, location and scale parameters, respectively.
• Gumbel distribution is the special case of GEV with κ = 0.
• Fréchet distribution is the special case of GEV with κ ψ = 1

Comparison of empirical distribution with distributions of maxima
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Acknowledgement: The parameters in each distribution were estimated with the Hydrognomon software.(www.hydrognomon.org)
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• Koutsoyiannis (2004) proposes the use of the GEV distribution as an alternative closer to reality, especiallyfor large return periods (T >50 years). Our analysis confirmed that GEV distribution with 3 parameters fitsthe data better, even though we have few data values with T > 50 years.
• The GEV parameters are estimated using L-Moments, since the most important parameter is κ, whichdetermines the behaviour of the distribution tail.



Annual maximum temperature (1)
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Annual maximum temperature (2)

The overall performance of the GCMs is decent, even though theannual daily maximum temperatures vary and there are remarkabledifferences between the inter-comparison of climate models. 12
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Annual maximum precipitation (1)
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Annual maximum precipitation (2)

14
The GCM performance regarding the rainfall extremes is poor in all cases.The rainfall intensity is strongly underestimated. We also observe that theGEV distribution successfully fits the observed data in both variables.
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Modelling challenges and alternative approaches• The issue of discrepancy between observed and modelled rainfall is well-known in the climate modelingcommunity, and has been dealt with a plethora of dynamical and statistical downscaling techniques withmixed results (e.g. Giorgi and Mearns, 1991, Kidson and Thompson, 1997, Tolika et al., 2008). Modelextensions with finer computational grids have been utilized (Regional models – RCMs), and even moretrendy approaches such as neural networks (Crane & Hewitson, 1998) have been employed as refinedmodeling strategies.• However, one should note that, even if these efforts are successful at reproducing observations at smallerscales, most of these methods are based on the GCMs for the initial data and boundary conditions. Hence,any inaccuracies and discrepancies are conveyed to smaller scales.

Fig. 2: The image on the left depicts the usual grid spaces of a general circulation model (~ 3.75° left) and a regional climate model forthe Arctic (~ 0.5° right). At each case only every second grid line is shown. The image on the right depicts the flowchart of the regionalatmospheric model HIRHAM. Regional models are based on the initial conditions and boundary conditions of GCMs in order to make amore detailed estimation of climate indices over a specified region. Source of the images: http://www.awi.de//en/home/ 15
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Conclusions• The quantitative results depict the inability of climate models to reproduce the actual(historical) temporal variation of rainfall and temperature, and in particular, theoccurrence of extreme events.
• In temperature they reproduce the seasonality and statistical characteristics of maxima,thus behaving like typical random number generators.
• In rainfall they do not reproduce seasonality neither the statistical behaviour of dailymaxima.
• More specifically, in rainfall extremes, GCMs consistently err by up to an order ofmagnitude. A systematic overestimation of the rainfall frequency is observed, along witha severe underestimation of the rainfall intensity in all studied locations.
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So, are models ready for “prime time” in water resources?• The current suite of GCMs is not developed to provide the level of accuracy required for hydrologicalapplications, and this is quite apparent from our results in daily rainfall extremes.• These findings are not unprecedented to the hydrological and water-management community:

• Despite the constant promotion and the resulting shift of water scientists towards such extended uses andadaptations, the key issue remains: Climate model outputs should not be used extensively and
injudiciously for hydrological and water management applications.• GCMs have been found to perform poorly on monthly to climatic scales (Anagnostopoulos et al., 2010,Nyego-Origamoi et al., 2010), and it is even more doubtful whether they can provide a credible basis onfiner scales for prediction of future flood regimes.• According to Koutsoyiannis (2010) this may not be a defect of current climate models, but may reflect theintrinsically unpredictable character of climate.

Reasonable concerns havealready been raised about themisuse of model outputs forwater managementapplications. In thischaracteristic editorial paper,Kundzewicz & Stakhiv (2010)address this issue in detail.Similar scientific concernshave already been raised byKoutsoyiannis (2008, 2010).
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