covarBLRPM {HyetosMinute}R Documentation

Covariance for the non-random Bartlett-Lewis rectangular pulse model

Description

The function covarBLRPM is the modelled covariance of rainfall using the equation of original Bartlett-Lewis rectangular pulse model. The model supports exponential, gamma and Weibull distribution for cell intensity.

Usage

covarBLRPM(l,g,b,n,mx,sxmx,h,lag,weibTF)   

Arguments

l

Parameter of Bartlett-Lewis rectangular pulse model which determines the storm arrivals according to a Poisson process.

b

Parameter of Bartlett-Lewis rectangular pulse model which determines the cell arrivals according to a Poisson process.

g

Parameter of Bartlett-Lewis rectangular pulse model which determines the entire length of the storm according to an exponential distribution.

n

Parameter of Bartlett-Lewis rectangular pulse model which determines the individual cell lengths according to an exponential distribution.

mx

A positive number that specifies the mean of cell intensities.

sxmx

A positive number that specifies the ratio of standard deviation to mean cell intensity.

h

Time scale (e.g. 1/60, 1/30, 1/12, 1, 6, 12, 24 hour etc.).

lag

The lag.

weibTF

Logical value that specifies if the intensities follow the Weibull distribution.

Value

covar

Covariance of rainfall depths.

Author(s)

Kossieris Panagiotis pankoss@hotmail.com

References

Rodriguez-Iturbe I., D. R. Cox, and V. Isham, Some models for rainfall based on stochastic point processes, Proc. R. Soc. Lond., A 410, 269-288, 1987.


[Package HyetosMinute version 2.1 Index]