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Abstract5

Several studies of instrumental and proxy climatic time series have identified long-term 6

persistence (LTP), which may reflect a long-term variability of several factors (solar 7

forcing, volcanic activity, etc.) and, thus, can support a more consistent physical 8

understanding and uncertainty characterization of climate. The implications of LTP in 9

climatic research, especially in statistical questions and problems, may be substantial, but 10

appear to be not fully understood or recognized. To offer insights on these implications, 11

we demonstrate using analytical methods that the characteristics of temperature series, 12

which appear to be consistent with the LTP hypothesis, imply a dramatic increase of 13

uncertainty in statistical estimation and reduction of significance in statistical testing, in 14

comparison with classical statistics. Therefore, we maintain that statistical analysis in 15

climatic research should be revisited, in order not to derive misleading results, and 16

simultaneously that merely statistical arguments do not suffice to verify the LTP (or 17

another) climatic hypothesis. 18
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Introduction19

“Even if we would know everything, we should still have to derive statistical information from 20

this knowledge in order to answer what are essentially statistical problems, such as 21

explaining gas pressure or the intensity of spectral lines”. (Karl Popper to Albert Einstein)22

The increasing interest on statistical analysis of climatic records in the last two 23

decades (Bloomfield, 1992; von Storch, 1995; von Storch and Zwiers, 1999; Cohn and 24

Lins, 2005; Rybski et al., 2006; and many others) can be attributed, above all, to the well 25

known detection problem (whether or not climatic changes have occurred) and the 26

attribution problem (whether or not observed changes are related to anthropogenic 27

forcings of the climate system). In several cases, such analyses have claimed the presence 28

in the data of Long Term Persistence (LTP, also known as Hurst phenomenon, Joseph 29

effect, long memory, long-range dependence, scaling behavior, and multi-scale 30

fluctuation). LTP is a behavior defined on statistical grounds (see equation 2 below) and 31

can be easily reproduced by appropriate stochastic models. However, this does not mean 32

that LTP implies necessarily stochastic dynamics. For instance, it has been demonstrated 33

that a simple deterministic nonlinear model (involving no random component) can 34

produce trajectories exhibiting LTP (Koutsoyiannis, 2006). From a practical point of 35

view, LTP indicates that the process is consistent with the presence of fluctuations on a 36

range of timescales, which may reflect the long term variability of several factors such as 37

solar forcing, volcanic activity and so forth. LTP can be also conceptualized as a 38

tendency of clustering in time of similar events (droughts, floods, etc).39

In statistical terms, the presence in a time series of long term fluctuations, which are 40

difficult to describe and quantify in a purely deterministic manner, implies dramatically 41

increased uncertainty, especially on long timescales, in comparison to classical statistics. 42

This is easy to understand, as the observed record could be a small portion of a longer 43

cycle whose characteristics might be difficult to infer on the basis of the available 44
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observations. In this respect, in processes characterized by LTP, the results of the 45

statistical analysis may be difficult to decipher. As a consequence, the application of 46

statistical tools to climatic time series should be carefully considered and classical 47

statistics should be carefully revisited to locate points that may produce misleading or 48

incorrect results.  49

In stochastic terms, LTP is contrasted to independence of events in time or even to 50

short-term persistence (STP, also known as short-term dependence). The most 51

representative of the latter is the Markovian dependence (also known as autoregressive of 52

order 1 – AR(1)), according to which the future is not influenced by the past when the 53

present is known. On the contrary, in LTP the influence of the past (possibly through 54

deterministic dynamics that in stochastic terms are reflected in the dependence structure) 55

never ceases. Both Markovian dependence and LTP can result from physical principles. 56

For example, the maximum entropy principle results in Markovian dependence if the 57

maximization of entropy is done on a particular timescale and in LTP if the maximization 58

is done on a range of timescales (Koutsoyiannis, 2005). Although many have considered 59

the Markovian behavior physically more plausible for the climate system (e.g. Mann and 60

Lees, 1996), its two aforementioned features (non influence of the past, exclusiveness of 61

a single scale of fluctuation) and other features discussed below might make it 62

implausible, in our opinion. Moreover, climatic records do not verify a hypothesis of 63

Markovian behavior. Thus, its adoption has been usually combined with a decomposition 64

of a climatic series into components, one of which is Markovian (equation (6) in Mann 65

and Lees, 1996); this decomposition is made on stochastic grounds (by spectral methods) 66

and its physical fundament may be disputable, in our opinion.67

In contrast, the LTP behavior agrees with empirical evidence in a variety of 68

geophysical records. In fact, the history of LTP started more than half a century ago, after 69

its discovery in geophysics by Hurst (1951), although, in a physical context (turbulence) 70

the concept may have been pioneered a decade earlier by A. Kolmogorov. Throughout 71
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these decades numerous studies provided indications that LTP may be omnipresent in 72

several natural (geophysical, biological) and human-associated (social, economical and 73

technological) processes (see Kantelhardt et al., 2002; Koutsoyiannis, 2003; Montanari, 74

2003). Most recently, the presence of LTP in temperature data has been considered by 75

Cohn and Lins (2005) and Rybski et al. (2006). Both have found that instrumental 76

records and reconstructed time series of temperature are consistent with the hypothesis of 77

LTP and therefore suggested that this property should be taken into account in statistical 78

tests. Earlier, Koutsoyiannis (2003) arrived at similar conclusions, arguing that there is 79

the need in hydroclimatic research to adapt classical statistics, which is based on the 80

Independent-Identically-Distributed (IID) paradigm, so as to become consistent with the 81

observed LTP behavior.  82

 In this respect, Cohn and Lins (2005) and Rybski et al. (2006) have suggested a 83

necessary rectification of the prevailing incorrect practices. Both have proposed adapted 84

statistical tests, which they have illustrated essentially on the same climatic record, the 85

instrumental temperature record of the Northern Hemisphere between 1856 and 2004 86

(due to Climatic Research Unit – CRU). Interestingly, however, their conclusions on the 87

detection and attribution problems are opposite. Rybski et al. (2006) conclude that the 88

hypothesis that at least part of the recent warming cannot be solely related to natural 89

factors, can be accepted with a very low risk. Cohn and Lins (2005) state that, given what 90

we know about the complexity, long-term persistence, and non-linearity of the climate 91

system, this warming can be due to natural dynamics. This disagreement may indicate, in 92

our opinion, that our understanding of the behavior of LTP and its consequences in 93

climatic analyses and statistical testing is not complete yet and that additional insights are 94

needed.95

Such insights are sought in this study using simple analytical methods, rather than 96

complicated numerical methods. The justification for this choice is that analytical 97

methods are more insightful (albeit less accurate for reasons that we will discuss) than 98
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numerical ones. As an empirical basis we use the same basic data set as in the two 99

aforementioned recent studies, the CRU record (now extended up to 2005) and, as 100

auxiliary information, the six recently reconstructed temperature records of the northern 101

hemisphere analyzed in Rybski et al. (2006) (here abbreviated as J98, M99, B00, E02, 102

M03, M05 that stand respectively for Jones et al., 1998; Mann et al., 1999; Briffa, 2000; 103

Esper et al., 2002; McIntyre and McKitrick, 2003; and Moberg et al., 2005; note that 104

M03 was not proposed as a reconstruction but only as a modification of M99 to illustrate 105

lack of robustness of methodology). These series are annual and therefore are not 106

affected by seasonality. The LTP properties of some of these and some other proxy series 107

have been also studied in other works recently (D. Stockwell, Scale invariance for 108

dummies, http://landshape.org/enm/?p=13) and earlier (Koutsoyiannis, 2003 for J98).109

 Our focus is on providing insight on uncertainty rather than on proposing accurate 110

statistical tests. In this respect, our study of the detection/attribution problem is carried 111

out on a conceptual basis and therefore we avoid proposing categorical results. In 112

addition, we try to locate potential pitfalls, which may appear if this uncertainty is not 113

explicitly considered and may have also influenced previous studies.114

Detecting the presence and intensity of long-term persistence115

Since Hurst (1951) discovered LTP, several formalisms and conceptualizations have 116

been used to study it, on which the algorithms to detect this behavior are based (Taqqu et 117

al., 1995; Montanari et al. 1997; Kantelhardt et al., 2003). Among these, the most 118

common are the original formalism by Hurst, based on the so-called rescaled range 119

statistic (R/S) and the detrended fluctuation analysis (DFA). However, we choose to use 120

in our analysis of climatic series the formalism based on the aggregated standard 121

deviation (ASD). The latter has several advantages such as (a) easy understandability and 122

transparency that enables better perception of the behavior and does not hide its 123

implications; (b) simplicity and minimal parameterization (it does not involve any other 124

concept than standard deviation), which enables a probabilistic description of the 125
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concepts it uses and hence a statistical framework of estimation and testing; and (c) 126

consistency, in terms of the estimators it produces. The method is based on the analysis 127

of the variability of the data aggregated at different time scales. Specifically, let Xi be the 128

process of interest on discrete time i (referring to years in our case) with (true – or 129

population) standard deviation  and let130

X(k)
i  := (Xi + … + Xi – k +1)/k (1) 131

denote the aggregate (average) process at time scale k, with (true) standard deviation (k)132

(the notation implies that X(1)
i Xi). For sufficiently large k, X(k)

i  represents the climatic 133

process; typically, the convention k = 30 is used to standardize the climatic time scale 134

(number of years). Now, LTP is expressed by the elementary scaling property135

(k) = k1 – H  (2) 136

where H is the Hurst exponent, which for stationary and positively correlated processes 137

varies in the range (0.5, 1). H = 0.5 means independence and increasing values represent 138

increasing LTP intensities.139

The simple equation (2) can support: (a) a definition of LTP; (b) a definition of a 140

stochastic process having this property, that is the simple scaling stochastic (SSS) process 141

(also known as stationary intervals of a self similar process); and (c) the estimation of H142

using sample estimates of (k) at several scales k. (2) implies that the autocorrelation (k)
j143

for scale k and lag j (defined as (k)
j  := Cov[X(k)

i , X(k)
i + k j] / Var[X(k)

i ]) is independent of scale 144

(e.g. Koutsoyiannis, 2002): 145

(k)
j  = j = (1/2) [(|j + 1|)2H + (|j – 1|)2H ] – |j|2H (3) 146

LTP is more precisely defined as an asymptotic property for large scales, in which case 147

(2) should be replaced by (k) = (l) / (k/l)1 – H for k/l > 1 and l ; also SSS is more 148

precisely defined in terms of scaling properties of the distribution function. It is 149

important to note that, even though the same equation (2) can serve as a basis for the 150

definition of the LTP as well as the SSS process, these two are totally different notions: 151
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LTP is a behavior that can be verified in any type of time series, such as series of 152

observations of a natural process, output of a deterministic model, or synthetic series 153

generated by a stochastic process. In contrast, SSS is a stochastic process.154

 For comparison, in the case of the simplest STP model, which is the AR(1), (2) and 155

(3) become respectively (Koutsoyiannis, 2002):  156

(k) = 
k

(1 – 2) – 2  (1 – k) / k
(1 – )2  (4)  157

(k)
1  = 

 (1 – k)
2

k (1 – 2) – 2  (1 – k),
(k)
j  = 

(k)
1

k (j – 1)
, j  1 (5) 158

where (1)
1 . These indicate that (a) for large k, (k) ~ / k; (b) 

(k)
j  is a decreasing func-159

tion of k; and (c) only at scale k = 1 (annual) is the process Markovian (i.e., j = j); at all 160

other scales the autocorrelation structure in (5) (i.e. 
(k)
j  = 

(k)
1  ( k)

j – 1
) is identical to that of 161

an autoregressive moving average (ARMA) process of order (1, 1), another classical 162

example of STP. Note that both AR(1) and SSS involve a single parameter each and that 163

the equations (2) and (3) of SSS are simpler than (4) and (5) of AR(1), even though the 164

former has been regarded by many as very complicated.  165

 Obviously, the different formalisms to LTP imply different estimates of H. This is 166

demonstrated in Table 1 for the seven time series and for three formalisms: the DFA as 167

derived by Rybski et al. (2006), the R/S and the ASD. In the latter we used an algorithm 168

by Koutsoyiannis (2003), which by construction ensures consistency (H < 1); it can be 169

observed that the other methods resulted in some inconsistent (> 1) values. Generally, all 170

methods result in very high but different H values. 171

Statistical uncertainty 172

 Given a sample X1, …, Xn of size n and observations x1, …, xn, clearly X(n)
1  is the 173

standard estimator of the mean μ of the process (most typically denoted as X
 –

) and x(n)
1  is 174

the estimate of μ. The standard deviation StD[X
 –

]  StD[X(n)
1 ] is a convenient indicator of 175

uncertainty, and according to the scaling property (2), StD[X
 –

] = (n) = /n1 – H. (Here 176

StD[.] := Var[.] denotes the standard deviation of a random variable). If we compare it 177
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to the classical statistical law StD[X
 –

] = / k (also valid asymptotically for STP processes 178

as shown in (4)), the differences are dramatic as H grows away from 0.5. To demonstrate 179

it, for a series of length n with LTP we can calculate the “equivalent” sample size n  in 180

the classical statistics (IID) sense, so that /n1 – H = /n 0.5. Clearly,181

n  = n2(1 – H) (6) 182

As shown in Table 1, the equivalent sample sizes resulting by this equation for the seven 183

time series are as low as 2-5. For instance in the SSS sense, the longest sample size 184

(1979), is equivalent to a classical statistical sample size of about 3! Thus, a record with 185

length of 1979 years, which certainly would be called a long record having in mind 186

classical statistics, is a very short record in the SSS framework. Only this example 187

suffices to demonstrate that the Hurst behavior has astonishing effects in the foundation 188

of climatology and hydrologic statistics, provided that the LTP hypothesis is true. 189

 Even the AR(1) model implies reduction of sample size; in this case using (4) and a 190

similar logic, we obtain that 191

n  = n
(1 – )2

(1 – 2) – 2  (1 – n) / n (7) 192

Values estimated from (7) are also given in Table 1 and show that the reduction is not as 193

dramatic as in the SSS case. 194

 However, the implications are perhaps even worse than described above, because the 195

analysis was based on the assumption that H is known a priori. In reality, H is estimated 196

from the data, so there is additional sampling uncertainty (statistical estimation error). 197

The sampling uncertainty applies also to all other statistics and we can anticipate that all 198

confidence bands are wider than in classical statistics, as will be discussed below. In 199

addition, because LTP is eventually an asymptotical property of the process (which 200

should be detected on the tail, i.e. on the largest scales), even the detection of LTP is 201

highly uncertain when dealing with time series with short length (Taqqu et al., 1995).202

 This point has already been made in some studies. For example Koutsoyiannis (2002) 203
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showed that the sum of three Markovian processes (whose behavior, rigorously speaking 204

is STP) is virtually indistinguishable from a process with LTP for lags as high as of the 205

order of 1000. To demonstrate this point further, we fitted to the E02 series an ARMA(1, 206

1) process. Testing the autocorrelation function of the residuals of this, we concluded that 207

they are indistinguishable from white noise; this means that the series is consistent with 208

the ARMA(1, 1) process, i.e. it exhibits STP with Hurst coefficient 0.50. Furthermore, 209

we generated with the fitted ARMA(1, 1) a synthetic series with sample size 2000, and 210

all estimation methods we tried gave incorrect values of H in the order 0.79-0.93. 211

Continuing this experiment, we also found that we need a series with length of about 212

20 000 to correctly estimate H, viz to find a value around 0.50. These examples clearly 213

point out that even the distinction between the extreme cases H = 0.5 and H  1 is not 214

statistically decidable with typical sample sizes. 215

Observation uncertainty 216

It is well known that observations of hydrometeorological processes involve several 217

inaccuracies; even in the instrumental CRU series, some observation uncertainty exists, 218

mainly because of spatial integration of point measurements whose number and locations 219

differ through history. But in the case of proxy data, there is an extra source of high 220

uncertainty because the data are not instrumental. In fact, all six proxy series considered 221

here are supposed to represent exactly the same process, that is, the evolution of the 222

northern hemisphere temperature. The different values assigned for the same year in the 223

different series manifest none other than the uncertainty in reconstruction of the past 224

climate. This is well known and is related to the subjectivity of dendroclimatology on 225

which the given proxy series are primarily based. The subjectivity originates from 226

sampling procedures (e.g. in picking and choosing which samples to use) and from the 227

differing statistical calibration approaches (recall, for instance, that M03 and M99 are 228

based on the same original data; for additional discussions see McIntyre and McKitrick, 229

2003, and Jones and Mann, 2004). The differences in seasonal and spatial 230
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representativeness of the various reconstructions is an additional source of uncertainty.231

An interesting piece of information conveyed by all proxies is the consistency of all of 232

them with the LTP hypothesis, even if we do not include in the analyses the years of 233

instrumental observations (which one may argue that are affected by global warming). To 234

make this clearer, we redid all analyses for the period 1400-1855, which is the common 235

period of all proxy series prior to the period of instrumental records. The results, shown 236

in Table 1, indicate that the H values obtained for this period are virtually identical to 237

those for the complete data set and close to each other, averaging to 0.91, a value close to 238

that of CRU (0.93). On the other hand, the standard deviations, even though they do not 239

depart significantly from the values of the whole period of each sample, are very 240

different to each other (ranging in 0.09-0.21oC vs. 0.27oC of the CRU series).241

 It is interesting to compare the above range of values with the sampling uncertainty of 242

the standard deviation of the CRU series. Combining known results (Matalas, 1967; 243

Koutsoyiannis, 2003), it is observed that, when there is temporal dependence in the 244

process of interest, the standard estimator S of the standard deviation  is not unbiased 245

and that an approximately unbiased estimator for both the LTP and STP cases is 246

S := 
n

n  – 1 S (8) 247

This assumes that n (the actual sample size) is large enough (for a more accurate 248

expression for small n see Koutsoyiannis, 2003). Obviously, in the SSS case the estimate 249

s  may differ dramatically from the standard estimate s (notice the notational convenience 250

of lower case letters for estimates, i.e. numerical values, and upper case ones for 251

estimators, i.e. random variables). Also, combining results from Koutsoyiannis (2003) 252

(based on systematic Monte Carlo simulations) and using s  as an estimate of the true 253

standard deviation , it can be obtained that in the SSS case, 254

StD[S]
s

 = 
StD[S]

s
(0.1 n + 0.8) (H)

 2 (n – 1) , with (H) := 0.088 (4 H2 – 1)2 (9) 255

 Now using the statistics of the CRU series, it is computed that the estimate of StD[S]256
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is 0.033oC (vs. 0.015oC in classical statistics). Roughly speaking, this justifies a 257

difference in standard deviation between the different series of about 0.08oC (at 258

significance 1%; even though the distribution of StD[S] is not normal). Consequently, 259

from the values in Table 1, we can conclude that the variability of the J98 and M05 series 260

is compatible with the variability of the CRU record. The same result does not apply to 261

all other series. Thus, if one accepts one of the other four series as representative of the 262

past climate, one can readily conclude that the observed temperature variation in the last 263

years is not a result of natural dynamics. In other words, there is a statistical significance 264

in the change of standard deviation, so no additional statistical test is needed. This also 265

explains why in Rybski et al. (2006) these four series resulted in “earlier detection” (to 266

use their terminology). Furthermore, with simple statistical calculations with the standard 267

deviation estimates shown in Table 1, we can easily classify the proxies in two groups 268

(one is J98, M03, M05 and the other one M99, B00, E02), each of which contains series 269

compatible to each other but the two groups are incompatible to each other. This makes 270

unrealistic the possibility to use all series simultaneously in a global statistical approach 271

and highlights once again the uncertainty involved in the use of proxy series. 272

Statistical testing for climatic change 273

The above findings highlight the potential lack of reliability of statistical tests 274

performed on climatic records, especially proxy ones. Some of these critical behaviors 275

are not known and not immediately evident. It is interesting to inspect with deeper detail 276

the potential effects on the statistical detection of climatic change.  277

Cohn and Lins (2005) used as a test statistic the slope of a linear fit to the time series 278

to test whether or not a climate variable has changed in a statistically significant sense, 279

over the available observation period. Rybski et al. (2006) proposed essentially the 280

statistic D(k)
i, l  := X(k)

i  – X(k)
i – l to test whether a or not a climate variable, defined on a time 281

scale k, has changed in a statistically significant sense, over a period of l years (starting 282

from year i). This is indeed an interesting statistic and we wish to discuss it further 283
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(noting that similar analyses apply to any type of statistical test). First, D(k)
i, l  does not 284

depend on a fitted model (as e.g. a linear fitting to the data). Second, it is flexible and 285

convenient as it allows choosing the climatic time scale k and the lag l/k (defined on scale 286

k). Third, and more important, it yields a simple, general (not dependent on the process), 287

convenient and exact expression for the standard deviation of the test statistic, which we 288

have obtained from (1): 289

 StD[D(k)
i, l ] = 2 (k) 1 – (k)

l/k (10) 290

This does not depend on the mean of the process and includes two multiplicative terms, 291

the first ( (k), computed by (2) or (4)) depending on the standard deviation and the 292

autocorrelation structure of the process, and the second (computed by (3) or (5)) 293

depending merely on the autocorrelation structure.  294

 The variation of the two terms with  for both the SSS and AR(1) processes is 295

depicted in Figure 1(a) for the assumptions indicated in the caption. The two terms have 296

opposing effects. The first term increases with , faster in the SSS than in the AR(1) case. 297

The second term is a decreasing function of  but in AR(1) it practically equals 1 unless 298

takes very high values (> 0.95). The combined effect of the two terms is demonstrated in 299

Figure 1(b) for  = 1. In the SSS case, for relatively low  (or H), StD[D(k)
i, l ] is an 300

increasing function of H but for  > ~0.70 it becomes a decreasing function tending to 301

zero as  1 (because the second term dominates). The situation is similar in the AR(1) 302

case but StD[D(k)
i, l ] becomes decreasing function of  only for  > 0.95.303

 In all this demonstration it was assumed that both  and  are known. In practice, 304

however both are unknown and estimated from the sample. The picture changes in this 305

case. To estimate StD[D(k)
i, l ], one may be tempted to use the standard estimate s of  that 306

is used in classical statistics (for example, Rybski et al. do not mention this problem at 307

all). However, as explained above (eqn. (8)), in SSS statistics, s is strongly biased and s308

should be used instead; thus, if s = 1 then, according to (8) and (6), an approximately 309

unbiased estimate of  is [n2(1–H) / (n2(1–H) – 1)]1/2. It can be seen in Figure 1(b) that in this 310
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case StD[D(k)
i, l ] is an increasing function for virtually the entire domain of .311

 The effects of autocorrelation to the significance of rejecting the null hypothesis of no 312

change in climate is demonstrated in Figure 1(c), assuming that a classical statistical test 313

has already resulted in rejection of the null hypothesis with extremely low risk (i.e. 314

significance level) 10–15. It is observed that the significance level increases dramatically 315

with . For  = 0.7 the significance level becomes 10–2 in the SSS case and 10–3 in the 316

AR(1) case. For higher values of  both the SSS and the AR(1) processes yield 317

significance levels that are very close to each other; this may be interesting to those who 318

do not trust the LTP hypothesis and prefer to assume an STP behavior.  319

 Yet this modified analysis was based on the tacit assumption that the true value of H320

or  is known. But this assumption is not true and thus the above methodology does not 321

consist a formal test, so we call it a “pseudo-test” and anticipate that it only yields a 322

lower bound of the significance level. For unknown H, the estimate of StD[D(k)
i, l ] is 323

anticipated to be greater but its calculation may be intractable by analytical means (given 324

that the estimators of H and  are dependent; Koutsoyiannis, 2003). A Monte Carlo 325

testing framework becomes then the method of choice (such a framework was proposed 326

in a different context by Cohn and Lins, 2005, which results in even greater escalation of 327

orders of magnitude of significance level). However, as explained above, the focus of 328

this Letter is on understanding so we preferred the analytical discussion, even though it 329

yields a pseudo-test rather than a formal one.  330

 It may be of some interest to apply this pseudo-test to the CRU data series. The 331

application is shown graphically in Figure 2, for a double-sided test for significance level 332

10–2 and for the SSS case, using all possible integer lags l/k from 1 (l = 30) to 4 (l = 120). 333

In neither case the pseudo-test resulted in rejection of the null hypothesis (no change), 334

although it comes close to rejection for 2005 for l/k = 3. As noted above, a real test would 335

be even more tolerant in rejecting the null hypothesis. This result agrees with Cohn and 336

Lins (2005) rather than with Rybski et al. (2006) who perhaps underestimated some 337
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uncertainty factors, as discussed above. 338

Conclusion and discussion 339

 The above analysis shows that the detection and attribution problem should be studied 340

in a framework properly recognizing and characterizing the dependence structure of the 341

climatic records, and that the classical IID framework should be abandoned. It also shows 342

that the statistical uncertainty is dramatically increased in the presence of dependence, 343

especially if this dependence is LTP.344

 Certainly, the detection and attribution problem will continue attracting attention in 345

the years to come, as newer data accumulate. Before concrete conclusions can be drawn, 346

a rigorous methodological framework, based on both physical and statistical arguments, 347

should be built. Obviously, the aim of this Letter was neither to provide such a 348

framework nor to give an answer to the detection/attribution problem. We hope, 349

however, that our remarks may be useful in building this framework. 350

 The answer to the very important question whether the dependence structure of 351

climatic processes is LTP or STP is very relevant to the detection and attribution 352

problems. However, a categorical answer to this question cannot be based on merely 353

statistical arguments, because, as we demonstrated above, even the presence of LTP can 354

be disputable on purely statistical grounds. Certainly, better physical understanding and 355

theoretical analyses are strongly needed to illustrate and verify or falsify the LTP 356

hypothesis or other climatic hypotheses.  357

 This emphasizes the need of a theory, in addition to statistical tools, to assess the 358

natural behaviors. Without a concrete theoretical framework the situation can be 359

summarized by the following quotation from Cohn and Lins (2005): “From a practical 360

standpoint … it may be preferable to acknowledge that the concept of statistical 361

significance is meaningless when discussing poorly understood systems.” 362
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Table 1 Comparisons of estimates of statistics for different methods and data sets.417

Data series CRU J98 M99 B00 E02 M03 M05 

All data

Sample size 150 992 981 994 1162 581 1979 

s, standard estimate 0.27 0.23 0.13 0.14 0.14 0.17 0.22 

H by DFA* 1.09 0.82 0.97 0.93 1.04 0.83 0.86 

H by R/S 1.07 0.90 0.89 0.89 0.93 0.97 0.92 

H by ASD 0.93 0.88 0.91 0.91 0.94 0.92 0.94 

  0.84 0.53 0.65 0.64 0.81 0.66 0.91 

SSS 1.9 5.0 3.4 3.3 2.5 2.8 2.7 Equivalent

sample size AR(1) 13.8 307.5 205.0 221.1 120.8 119.3 95.3 

Period 1400-1855 

Sample size  456 456 456 456 456 456 

s, standard estimate  0.20 0.10 0.13 0.09 0.16 0.21 

H by ASD  0.86 0.88 0.91 0.93 0.92 0.93 

   0.54 0.62 0.59 0.77 0.65 0.88 

* Values from Rybski et al. (2006), except in the CRU series, which was estimated in this study. 418
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List of Figure captions 419

Figure 1 Variation with  of (a) the two multiplicative terms comprising StD[D]420

assuming  = 1, (b) StD[D] assuming  = 1 or s = 1 as indicated, and (c) the implied 421

significance in rejecting the null hypothesis assuming that s = 1 and that in classical IID 422

statistics this significance level is 10–15; assumptions: k = 30, l/k = 3, n = 150.423

Figure 2 Graphical depiction of the pseudo-test based on StD[D] with known H. The 424

continuous solid curve represents the CRU time series averaged over climatic scale k = 425

30. The series of points represent values of D for the indicated lags l/k. Horizontal lines 426

represent the critical values of the pseudo-test, which are the estimates of StD[D] times a 427

factor 2.58 corresponding to a double-sided test with significance level 1% and assuming 428

normality (only the positive critical values are plotted).  429
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Figure 1 Variation with  of (a) the two multiplicative terms comprising StD[D(k)

i, l ]433

assuming  = 1, (b) StD[D(k)
i, l ] assuming  = 1 or s = 1 as indicated, and (c) the implied 434

significance in rejecting the null hypothesis assuming that s = 1 and that in classical IID 435

statistics this significance level is 10–15; assumptions: k = 30, l/k = 3, n = 150. 436
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Figure 2 Graphical depiction of the pseudo-test based on StD[D(k)

i, l ] with known H. The 439

continuous solid curve represents the CRU time series averaged over climatic scale k = 440

30. The series of points represent values of D(k)
i, l  for the indicated lags l/k. Horizontal lines 441

represent the critical values of the pseudo-test, which are the estimates of StD[D(k)
i, l ] times 442

a factor 2.58 corresponding to a double-sided test with significance level 1% and 443

assuming normality (only the positive critical values are plotted).  444


