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Abstract. The intensive research of the recent years on climate change may have resulted in 

diverging model predictions of the future climate and, also, have caused scientific debate on 

the detection and attribution of climate changes. Undoubtedly, however, it has leaded to the 

strong conclusion that climate has ever, through the planet history, changed irregularly on all 

time scales. The changes of the climate on all scales are closely related to the Hurst 

phenomenon, which has been detected in almost every long hydroclimatic time series and is 

nothing more than a simple scaling behavior of climate variability over timescale. The climate 

variability, anthropogenic or natural, increases the uncertainty of the hydrologic processes. It 

is shown that hydrologic statistics, the branch of hydrology that deals with uncertainty, in its 

current status is not consistent with the varying character of climate and more specifically 

with the Hurst phenomenon. Typical statistics used in hydrology such as means, variances, 

cross- and auto-correlations and Hurst coefficients, and the variability thereof, are revisited 

under the hypothesis that climate changes on all scales, following a simple scaling law, and 

new estimators are developed which in many cases differ dramatically from the classic 

statistical estimators. The new statistical framework is applied to real-world examples for 

typical tasks such as estimation and hypothesis testing where again the results depart 

significantly from those of the classic statistics. 
 

GAP index terms: 1869 Stochastic processes, 1833 Hydroclimatology, 1620 Climate 

dynamics, 6309 Decision making under uncertainty 
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1. Introduction 

 In the last two decades, climate change has been the subject of intensive scientific research, 

focusing on the understanding of factors, mechanisms and processes related to climate, on 

modeling the climate at the global scale using the so called climatic, or general circulation 

models, and on the detection and attribution of changes in the past climate. Climate change 

has been, at the same time, the subject of scientific debate concentrating firstly on whether 

existing climatic records indicate a significant change of the present climate versus the past, 

and, secondly, on whether detected changes are attributed to natural or anthropogenic 

forcings.  

 Thus, there is a number of studies speaking about "unprecedented global warming" of the 

past two decades, which must be attributed to anthropogenic forcings, such as the emissions 

of CO2. To refer to a recent example, Stott et al. [2000] comparing observations with 

simulations of a coupled ocean-atmosphere general circulation model conclude that both 

natural and anthropogenic factors have contributed significantly to 20th century temperature 

changes. More specifically, when they employed only natural forcings in their model, 

predictions did not match up well with the observational temperature record in the last 35 

years, where the calculated temperatures fell somewhat below the measured temperatures 

(although the model results matched up observations for the earlier years starting from 1860). 

Finally, they predict that anthropogenic global warming under a standard emissions scenario 

will continue at a rate similar to that observed in recent decades.  

 On the other side, to invoke another recent study, Przybylak [2000] detects no global 

warming in the recent years. Specifically, he studies mean monthly temperatures of Arctic and 

sub-Arctic areas using observations and grid data over the period of instrumental 

observations. According to the author, the polar regions “should play a very important role in 

the detection of global changes” as they are the most sensitive and “warming and cooling 
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epochs should be seen most clearly here and should also occur earlier than in other parts of 

the world.” The analyses show that in the Arctic, “since the mid-1970s, the annual 

temperature shows no clear trend” whereas "the highest temperatures since the beginning of 

instrumental observation occurred clearly in the 1930s” and “even in the 1950s the 

temperature was higher than in the last 10 years”; in addition, “the level of temperature in 

Greenland in the last 10-20 years is similar to that observed in the 19th century”. The author 

concludes that “the observed variations in air temperature in the real Arctic are in many 

aspects not consistent with the projected climatic changes computed by climatic models for 

the enhanced greenhouse effect,” and “the temperature predictions produced by numerical 

climate models significantly differ from those actually observed.” 

 The issue of climate modeling capability is also examined in the comprehensive study by 

Barnett et al. [1999] who state that, at present, it is not possible to distinguish the relative 

contributions of specific natural and anthropogenic forcings to observed climate change. One 

of the main reasons is that fully realistic simulations of climate change due to the combined 

effects of all anthropogenic and natural forcings mechanisms have not been computed yet. 

The authors also state that “there has been to date no completely convincing demonstration 

that the anthropogenic effects predicted by advanced climate models have been 

unambiguously detected in observations”, whereas “given the large model uncertainties and 

limited data, a reliable weighting of the different factors contributing to the observed climate 

change cannot currently be given” and “we cannot attribute, at this time, with a high level of 

statistical significance, the observed changes in global and large-scale regional climate to 

anthropogenic forcing alone.” They conclude that “the current state of affairs is not 

satisfactory.” 

 If the current state of affairs is not satisfactory when dealing with the past and present 

climate, things are even worse when attempting to produce predictions of the future. (After 

all, it is not so difficult to fit models with a number of adjustable parameters to historical 
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records, but in predicting the unknown future the situation is completely different.) Climatic 

models are necessarily simplified representations of the climate system as they do not 

describe completely the dynamics of all involved processes but, rather, they use simplified 

representations, known as parameterizations for a large number of processes including 

mixing, convection and clouds [e.g. von Storch et al., 2001]. On the other hand, climate is 

influenced by several factors with opposing effects [e.g., Ledley et al., 1999], either 

anthropogenic (greenhouse gases, aerosols) or natural (solar irradiance, clouds, hydrological 

cycle, volcanic activity, etc.). Some of these factors are extremely difficult or even impossible 

to incorporate in models and/or to predict. Overall, as von Storch et al. [2001] put is, “climate 

must be considered as a stochastic system, and our climate simulation models as random 

number generators”. Even merely the natural forcings are enough to result in a perpetually 

changing climate. Indeed, we now know that climate “changes irregularly, for unknown 

reasons, on all timescales” [National Research Council, 1991, p. 21]. 

 The uncertainty or unpredictability becomes even higher when moving from general 

climatic variables, such as temperature (which is the key variable for most of the studies 

mentioned above) to hydrologic variables such as rainfall and runoff, and from the coarse 

spatial scale of climatic models to the finer spatial scale of hydrologic models. In parallel, the 

importance of these hydrologic variables is higher, when dealing with engineering and 

management issues such as design and operation of projects and hydrosystems.   

 In the last two decades, hydrologists have developed different strategies or methodologies 

to deal with climate change. One of these consists of the so-called downscaling of climatic 

models results into the area and timescale of interest and, subsequently, the feeding of 

hydrologic models with the downscaled data. Another option is the adoption of alternative 

scenarios with plausible shifts in the average hydrologic regime of the area of interest (often 

expressed as a percentage of the historical averages). The first method suffers from the 
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accumulation of uncertainties and errors in the chain of models that are used, whereas the 

second one is arbitrary and lacks quantification of uncertainty.  

 Traditionally, however, hydrologic and water resources studies have been based on the 

quantification of the natural uncertainties and the resulting risk in terms of probability. The 

discipline of hydrologic statistics [e.g. Chow, 1964; Yevjevich, 1972; Haan, 1977; Kottegoda, 

1980; Kite, 1988; Hirsch et al., 1993; Stedinger et al., 1993] has been well developed and 

applied in almost every hydrologic engineering study. Hydrologic statistics, though, has been 

based on the implicit assumption of a stable climate. The questions arise then: (1) Is 

hydrologic statistics, in its present state, consistent with the assumption of a varying climate? 

(2) If not, what adaptations are needed to achieve this consistency? (3) Can hydrologic 

statistics be used to quantify the total uncertainty under a varying climate?  

 These are the main questions studied in this paper. The usefulness of the answers to these 

questions from an engineering and management point of view is almost obvious. However, 

one may argue that the anthropogenic climate change cannot be predicted at all with statistical 

means, based on historical records that are almost free of anthropogenic influences. This may 

be correct if indeed, the contribution of anthropogenic forcings is high, relative to that of the 

natural forcings, a statement that is still unproven. Even if this is the case, the usefulness of 

statistical estimators consistent with a naturally varying climate is high for the procedure of 

detecting climate change. Detection of climate change requires demonstrating that the 

observed change is larger than would be expected to occur by natural causes alone, and this is 

clearly a statistical problem. In addition, even when working with purely deterministic 

climatic models, the usefulness of statistics is undeniable in the phase of evaluating the model 

results. 

 If we revisit the classic statistical estimators (e.g. for the mean, variance, etc.) and glance at 

their mathematical proofs, we will see that they are based on the assumption that statistical 

samples consist of independent, identically distributed variables. Obviously, this assumption 
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is not consistent with the nature of hydrometeorological time series. What is a consistent 

assumption is studied in section 2 by refining older ideas on the stochastic representation of 

hydrometeorological processes and with the help of real world examples. The finally adopted 

stochastic representation is consistent with the aspect of a varying climate. This stochastic 

representation influences seriously typical statistical tasks such as estimation, prediction and 

hypothesis testing. This is studied in detail in section 3 where the inappropriateness of classic 

estimators is demonstrated and new statistical estimators and confidence limits of estimations 

are derived. The developed statistical framework is further demonstrated in section 4 by 

means of case studies. The conclusions are drawn in section 5. 

2. Stochastic representation of hydrometeorological processes 

2.1 Older ideas in light of a varying climate 

 Hydrometeorological processes such as rainfall, runoff, evaporation, etc., have been often 

considered [e.g. Haan, 1977, p. 275; Kottegoda, 1980, p. 26, Salas, 1993, p. 19.7; Shaw, 

1994, p. 372] as composing of at least three parts, a deterministic part (T) representing trends 

and jumps, another deterministic part representing periodicity (P), and a stationary stochastic 

part (Ξ). Moreover, the process of interest, say Xi with i denoting discrete time, has been 

decomposed [Kottegoda, 1980, p. 26, Shaw, 1994, p. 373] according to 

 Xi = Ti + Pi + Ξi (1) 

This conceptualization originates from observation of real-world time series, which indeed 

exhibit parts with rising or falling trends; the periodicity is obvious due to the annual cycle of 

the earth movement; and the stochastic part is the remaining part that is unexplained in a 

deterministic framework.  

 We maintain that this conceptualization is inappropriate and inconsistent for 

hydrometeorological processes. To demonstrate this, let us start with the periodicity term, 
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assuming for the time being that Ti = 0. If Pi is a purely deterministic periodic component, it 

becomes clear from (1) that Xi – Pi ≡ Ξi will have, for instance, constant variance, independent 

of the season i (e.g., month), which is not correct: it is well known that the variance of 

hydrometeorological processes depends on the season. A better alternative is to consider Xi = 

Pi + ai Ξi also assuming that ai is a deterministic periodic term. If for example we assume that 

Pi equals the seasonally varying mean, at equals the seasonally varying standard deviation, 

and let Ξi have zero mean and unit standard deviation, then the latter model can represent well 

the seasonally varying mean and standard deviation of Xi. However, it can be easily shown 

that it cannot represent other important seasonally varying statistics, such as coefficients of 

autocorrelation and skewness, which the model treats as being constant for all seasons. 

Therefore, a decomposition of the original process Xi into a periodic deterministic and a 

nonperiodic stochastic part is not possible. This, however, is not a major problem: The theory 

of stochastic process can very well handle stochastic processes with intrinsic periodicity, 

using the so called cyclostationary (also called periodic or seasonal) modeling tools [see e.g. 

Gardner, 1989, pp. 323-404; Bras and Rodriguez-Iturbe, 1985; Salas, 1993] or using 

disaggregation techniques [e.g., Koutsoyiannis, 2001a]. Therefore, we will not examine 

further in this paper the periodicity issue, which has been effectively resolved, but not in 

terms of decomposition or isolation of the periodic part.  

 Now, let us come to the trend term, which is the most significant for the scope of this 

paper. We use three example time series, which are depicted in Figure 1 through Figure 3. 

The first example, shown in Figure 1, is a long time series (992 years) representing the North 

Hemisphere temperature anomalies (in oC versus 1961-90 mean). This series (available from 

ftp.ngdc.noaa.gov/paleo/contributions_by_author/jones1998/) was reconstructed by Jones et 

al. [1998] using temperature sensitive paleoclimatic multi-proxy data from 10 sites worldwide 

that include tree rings, ice cores, corals, and historical documents. Only four of the proxy data 

series go back before 1400 AD and, therefore, data prior to about 600 years ago are more 
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uncertain than temperature reconstructions after that time [see also Jones et al. 2001]. It is 

worth to note that a similar series extending through 1400-1998 A.D. was reconstructed by 

Mann et al. [1998]. An overview of important paleoclimate proxies and their uses is presented 

by Stokstad [2001]. 

 The second example, shown in Figure 2 is one of the longest series of instrumental 

meteorological observations, the series of mean annual temperature at Paris/Le Bourget 

extending through 1764-1995. This is a typical example of a set of similar series of 

temperatures of European countries that go back to the 18th century (available from 

ftp.cru.uea.ac.uk). 

 The third example, shown in Figure 3, is the longest available record of river runoff in 

Greece, the Boeoticos Kefisos river runoff. The river is located to the north of Athens and the 

time series length is 91 years (hydrologic years 1907-08 to 1997-98).  

 A common characteristic in all three examples is that a local overyear average (plotted in 

the figures as 5- and 25-year average) is not stable but, rather, it exhibits significant 

variability. For example, in the first series (Figure 1) during the 16th century there is a falling 

trend of the local average, which is inverted during ca. 1650-1750, becomes again falling 

during ca. 1750-1850, and becomes rising thereafter. In the second series (Figure 2), there are 

falling trends during ca. 1765-1790, 1825-1875, and 1950-1980, and a rising trend during 

1875-1950. (Note that the periods of falling and rising trends do not coincide with those of the 

first series; also, in similar series of different European towns the periods of falling and rising 

trends are different.) In the third series (Figure 3), there is an amplifying falling trend since 

1920. (Notably, this trend agrees with a similar trend of the annual precipitation in the area; 

[Nalbantis et al., 1993]).  

 A visual assessment of the magnitude of the overyear variability and trends can be done by 

comparing the actual time series with a series of white noise (independent, identically 

distributed variates). Such a synthetic series of white noise with length and marginal statistical 
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characteristics equal to those of the first original series has been plotted in the middle panel of 

Figure 1. Clearly, the original series differs significantly, in a statistical sense, from white 

noise; the variability of the latter in the aggregation level of 25 years is much lower than that 

of the former.  

 The apparent falling and rising trends in all our example time series can be considered as 

climate changes or variations, but are they deterministic? This may be a difficult question as 

the definition of determinism belongs to the sphere of philosophy. Here we will attempt to 

give a practical answer based on Borel’s [1920] view [see also von Plato, 1994, p. 41], who 

identifies determinism with predictability saying that there is indeterminism whenever 

Nature’s actions are unpredictable. Clearly, then, these trends are only identified a posteriori 

(they cannot be predicted a priori); they are not regular, and it is difficult to attribute them to 

a cause-and-effect process. But, even if a deterministic model was available that could predict 

these trends accurately, this prediction would be done by operating the model in a fine 

timescale; the large-scale characteristics would be obtained by aggregating the results of the 

fine timescale. In this case, the complete time series would be deterministic and not merely 

the coarse timescale features, i.e. the overyear trends. Thus, the answer to the question set is 

negative.  

 Besides, there is not useful at all to consider the large-scale variability as a succession of 

deterministic trends. There would be, indeed, a reason if our purpose was to “subtract” these 

trends from the signal (a procedure known as detrending) so that the residual looks like the 

random signal of the middle panel of Figure 1. In fact, however, this would not help at all, 

because it is always our main objective to do projections for the future, and there is no 

reasonable way to do any projection of the “deterministic” part Ti. Again, the solution is to 

avoid decomposing of the original process Xi and treat it as a whole.  

 In conclusion, our interpretation is that the complete time series in all examples, including 

large-scale trends, must be regarded as stochastic signals. In this interpretation, the large-scale 
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trends in the time series are closely related [e.g., Evans, 1996] to the well-known ‘Hurst 

phenomenon’, the special behavior of hydrologic and other geophysical time series 

discovered by E. H. Hurst [1951]. This behavior (also termed the ‘Joseph effect’ due to 

Mandelbrot [1977, p. 248]) has been characterized as the tendency of wet years to cluster into 

wet periods or of dry years to cluster into drought periods and, therefore, it has been also 

known as large-scale persistence. Equivalently, this behavior can be viewed as the result of 

falling and rising trends of the geophysical time series or, else, the large-scale variability of 

the time series. Hurst [1951] expressed mathematically his discovery in terms of a scaling 

exponent, H, which became known after him as the Hurst exponent (or coefficient). In a white 

noise series, such as the one plotted in the middle panel of Figure 1, H takes the value 0.5 

whereas in all real-world time series H is greater than 0.5 and smaller than 1. The Hurst 

coefficient (the mathematics of which will be discussed later) provides a direct means to 

demonstrate the close relationship of large-scale variability with the Hurst phenomenon: if H 

is calculated using the original time series the result will be much higher than 0.5 (see section 

4) but, if the same calculation is repeated for the detrended series, H will be around 0.5.  

 The above interpretation may seem similar (from a practical point of view) to that by 

Klemes [1974], who attributed the Hurst phenomenon to nonstationary means. However, there 

is a fundamental difference here. Nonstationarity of the mean would be the case if there 

existed a deterministic function expressing the mean as a function of time. On the contrary, 

we maintain that observed rising or falling trends are not deterministic components but rather 

large-scale stochastic fluctuations.  

 Consequently, a stochastic representation of hydrometeorological time series that is 

consistent with the varying climate hypothesis must be also consistent with the Hurst 

phenomenon. It is well-known that the most common stochastic models such as 

autoregressive (AR) models, moving average (MA) models, or combinations of the two 

(ARMA) are inappropriate to represent the Hurst phenomenon. However, several types of 
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stochastic models able to reproduce the Hurst phenomenon have been proposed [Mandelbrot, 

1965; Mandelbrot and Wallis, 1969a, b, c; Mandelbrot, 1971; Ditlevsen, 1971; Mejia et al., 

1972; see also Bras and Rodriguez-Iturbe, 1985, pp. 210-280]. In addition, Koutsoyiannis 

[2000] has proposed a generalized framework for reproducing short- or large-scale persistence 

based on a generalized autocovariance function. Using the latter method, we have generated a 

second synthetic series, again with length and marginal statistical characteristics (now 

including the Hurst exponent), equal to those of the original series of temperature anomalies, 

which we have plotted in the lower panel of Figure 1. In this case, the large-scale variability 

agrees (in a statistical sense) with that of the original series (although periods of falling and 

rising trends are obviously different). 

2.2 Basic assumptions and notation 

 Let Xi denote a hydrometeorological process with i = 1, 2, …, denoting discrete time. In 

the context of this paper we assume that Xi is not periodic, which means that our time scale is 

at least annual. Rather, we will assume that the process is stationary, a property that does not 

preclude it to exhibit large scale variability. Further, let us denote its mean µ := E[Xi], its 

autocovariance 

 γj := Cov[Xi, Xi + j],   j = 0, ±01, ±2, … (2) 

and its autocorrelation 

 ρj := Corr[Xi, Xi + j] = γj / γ0,   j = 0, ±1, ±2, … (3) 

We also denote σ := γ0 the process standard deviation. 

 Let k be a positive integer that represents a timescale larger than the basic timescale of the 

process Xi. We denote Z
 (k)
i  the aggregated stochastic process on that timescale, i.e., 
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 Z
 (k)
i  := ∑

l = (i – 1) k + 1

i k

  Xl (4) 

Obviously, for k = 1, Z
 (1)

i  ≡ Xi; for k = 2, 

 Z
(2)
1  := X1 + X2,     Z

(2)
2  := X3 + X4,     Z

(2)
3  := X5 + X6, … (5) 

for k = 3, 

 Z
(3)
1  := X1 + X2 + X3,     Z

(3)
2  := X4 + X5 + X6,     Z

(3)
3  := X7 + X8 + X9, … (6) 

etc. The statistical characteristics of Z
 (k)
i  for any timescale k can be derived from those of Xi. 

For example, the mean is 

 E[Z
 (k)

i ] = k µ  (7) 

whilst the variance and autocovariance (or autocorrelation) is more difficult to derive as it 

depends on the specific structure of γj (or ρj). 

 Thus, in the simplest case, where Xi is white noise (different Xi are independent identically 

distributed random variables), γj = 0 (and ρj = 0) for j ≠ 0. Apparently then, the aggregated 

process will have variance 

 γ
 (k) 
0  := Var[Z

(k)
i ] = k γ0 (8) 

and autocovariance and autocorrelation 

 γ
 (k) 
j  := Cov[Z

 (k)
i , Z

 (k)
i + j] = 0,     ρ

 (k) 
j  := Corr[Z

 (k)
i , Z

 (k)
i + j] = 0,   for  j ≠ 0 (9) 

 The hypothesis is set forward that hydrometeorological processes exhibit scale invariant 

properties at any scale longer than annual, i.e., 

 (Z
 (k)

i  – k µ) =
d
 ⎝⎜
⎛

⎠⎟
⎞k

 l 

H

  (Z
 (l)
j  – l µ) (10) 
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where the symbol =
d
 stands for equality in (finite dimensional joint) distribution and H is the 

Hurst exponent. Equation (10) is valid for any integer i and j (that is, the process is stationary) 

and any timescales k and l (≥ 1). If Xi is assumed Gaussian, this equation defines in discrete 

time the process known as fractional Gaussian noise (FGN), which was introduced by 

Mandelbrot [1965]. (In fact, the FGN process is typically defined in continuous time, e.g., 

Saupe [1988, p. 82]; Abry et al. [1995]; this however is not our scope here). It is easily shown 

[e.g., Bras and Rodriguez-Iturbe, 1985, p. 221] that the process defined by (10) reproduces 

the Hurst phenomenon. In our scope, we will avoid using the standard name ‘fractional 

Gaussian noise’ for the process defined by (10) for several reasons: The first term, fractional, 

is not easily understandable, unless combined with fractals, which is not necessary, when 

dealing with hydrologic statistics. The second term, Gaussian, may be not appropriate for 

several hydrologic processes that are asymmetric (non-Gaussian); there is no need to restrict 

our analysis to processes that are Gaussian. The third term, noise, usually describes a random 

and unstructured process, which is not the case in hydrologic processes that are structured. 

Instead we will use the term simple scaling stochastic process or simple scaling signal (SSS; 

can equivalently read as self similar signal). 

 As a consequence of (10), for i = j = l = 1 we get 

 γ
 (k)
0  := Var[Z

 (k)
i ] = k2H γ0 (11) 

Thus, the standard deviation is a power law of the scale or level of aggregation k with 

exponent H. The extremely simple relation (11) can serve as the basis for estimating H 

[Montanari et al., 1997; Koutsoyiannis, 2001b; see also section 3.3 below] thus avoiding the 

use of the original estimation technique by Hurst [1951] that is based on the so called rescaled 

range and also avoiding a number of problems relating with it [Koutsoyiannis, 2001b; see also 

section 3.3 below]. It is easy then to show [Koutsoyiannis, 2001b] that, for any aggregated 

timescale k, the autocorrelation function is independent of k, and given by 
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 ρ
 (k)
j  = ρj = (1 / 2) [(j + 1)2H + (j – 1)2H ] – j2H,      j > 0 (12) 

We can characterize the SSS as a simplified model of reality, which uses one single parameter 

H to express the correlation structure of the process, noting that it is much more effective in 

representing hydrometeorological series than, for instance, the ARMA processes.  

3. Statistical estimation and prediction under the SSS representation  

In this section we will derive estimations for the most common statistics that are used in 

hydrologic estimation, prediction and testing under the hypothesis that the process of interest 

is SSS. We will assume that our sample is a time series of length n whose items correspond to 

consequent time instances, i.e., X1, …, Xn. 

3.1 Estimation of mean 

The simpler statistic estimated from a time series is the average X– with estimator  

 X– := 
1
n ∑

i = 1

n

 Xi  (13) 

This is an unbiased estimator regardless of the type of the process Xi, i.e., 

 E[X–] = µ (14) 

In classic statistics, its variance is 

 Var[X–] = 
σ2

n  (15) 

which, however, is not valid in SSS. Instead, observing that X– = Z
(n)
 /n (where for simplicity 

we have omitted the subscript i = 1 of Zi
(n)
 ) and using (11) we obtain 

 Var[X–] = 
σ2

n2 – 2H (16) 



16 

 

We remind that the square root of Var[X–] is the standard error in estimating the true mean 

from the observed time series. For H = 1/2 both (15) and (16) result in the same standard 

error, which is inversely proportional to the square root of the length of the time series. For 

large H, however, the difference of (15) and (16) becomes very significant. To demonstrate 

this, we consider a time series of 100 years observations (n = 100) and assume H = 0.8. The 

classic statistics says that the estimation error is 1/10 of the process standard deviation. 

However, the correct standard error, as given by (16), is 1/2.5 of the process standard 

deviation, i.e., 4 times larger. Moreover, to have an estimation error equal to 1/10 of the 

process standard deviation, the required length of the time series would be 100 000 years! 

Obviously, this dramatic difference should induce substantial differences in other common 

statistics, as well, as we will see in the following sections. 

3.2 Estimation of variance and standard deviation for known Hurst coefficient 

 The typical variance estimator 

 S2 = 
1

n – 1 ∑
i = 1

n

 (Xi – X–)2 (17) 

is no longer an unbiased estimator, as is in classic statistics. To show this, we rewrite (17) as  

 S2 = 
1

n – 1 ∑
i = 1

n

 [(Xi – µ) – (X– – µ)]2 (18) 

and, after algebraic manipulations, also considering (13), we get 

 S2 = 
1

n – 1 ∑
i = 1

n

 (Xi – µ)2 – 
n

n – 1 (X– – µ)2 (19) 

Taking expected values in (19) and also considering (16) we obtain 

 E[S2] = 
n – n2H – 1

n – 1  σ2 (20) 
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which proves that (17) is unbiased only when H = 0.5. Consequently, the SSS unbiased 

variance estimator for any known H is 

 S~2 := 
n – 1

n – n2H – 1 S2 = 
1

n (1 – n2H – 2) ∑i = 1

n

 (Xi – X–)2 (21) 

This expression has some similarity with earlier expressions that corrected the variance 

estimator in terms of the lag 1 autocorrelation [Matalas, 1967; O’Connell, 1974; Salas, 1993, 

p. 19.11]. We can then consider S~ (the square root of S~2) as an approximately unbiased 

estimator of the standard deviation σ. The variance of the estimator of S for a normal 

distribution of X in the classic statistics is [e.g., Yevjevich, 1972, p. 193] 

 Var[S] ≈ 
σ2

2(n – 1) (22) 

In the SSS case it is very difficult to derive the variance of estimator S or S~ in an analytical 

manner. Instead we performed a systematic Monte Carlo study (again for a normal 

distribution of X), from which we concluded that 

 Var[S~] ≈ 
σ2

κ(H) nλ(H) (1 – n2H – 2) (23) 

where 

 κ(H) := 
⎩⎪
⎨
⎪⎧[0.5 (1 – H)]–0.5 H ≤ 0.6

[1.2 (1 – H)]–1.1 H > 0.6
 (24) 

and 

 λ(H) := 
⎩⎪
⎨
⎪⎧1 H ≤ 0.6

[2.5 (1 – H)]0.45 H > 0.6
 (25) 

It is easily verified that, when H = 0.5, (23) shifts to (22). 

 To demonstrate the consequences of using the inappropriate classic estimators of variance 

and standard deviation we have performed a Monte Carlo experiment. We generated a long 
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series of SSS with H = 0.8, µ = 2 and σ = 0.5. From this series we constructed an ensemble of 

100 samples each with length n = 100 or 50 and we estimated the sample standard deviations 

using both estimators. We did the same for aggregation levels k = 1 to 10 when n = 100 and k 

= 1 to 5 when n = 50 (so that in any aggregation level the number of items n / k is at least 10). 

The results are shown graphically in Figure 4 in a logarithmic plot of standard deviation 

versus scale. The true standard deviation for each aggregation level k is obtained from (11). 

Its empirical values are obtained as the averages of the 100 samples. We observe that, at the 

basic scale (k = 1), the classic estimators underestimate the true standard deviation by about 

6% and 9% for n = 100 and 50, respectively. The percentage of underestimation increases to 

about 20% at the largest scale used, i.e., k = n / 10. However, the SSS estimates agree 

perfectly with the theoretical curve (the two curves are practically indistinguishable). 

 This increasingly underestimated standard deviation with the increase of the scale k, when 

the classic estimator is used, has another important consequence: it obscures the presence of 

the Hurst phenomenon for small samples. Specifically, in the logarithmic plot of Figure 4 we 

observe that the slope of the curve of classic estimate of standard deviation versus scale is not 

constant, as implied by the scaling law (11), but decreases with the increase of scale k. Not 

only does it result in underestimation of the Hurst coefficient itself, but it may also lead us to 

consider that this slope tends to 0.5 for large scales, in which case we will reject the presence 

of the Hurst phenomenon.  

 In addition, the standard deviation, over the 100 samples, of the sample standard deviation 

at the basic scale are 0.067 is 0.043 for n = 50 and 100, respectively; the classic estimator (22) 

predicts 0.051 and 0.036, respectively, whereas estimator (23) predicts the values 0.061 and 

0.046, respectively, which are much better than the classic ones. 
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3.3 Simultaneous estimation of variance and Hurst coefficient 

 When the Hurst exponent is unknown, which is the most usual case when dealing with an 

observed time series, (21) cannot be applied as it contains the unknown H. Traditionally, the 

estimation of H has been based on the original Hurst’s algorithm which is based on the 

concept of the so called rescaled range, a statistic with many difficulties and inaccuracy 

[Koutsoyiannis, 2001b; see also discussion below]. Other algorithms have been studied by 

Montanari et al. [1997]. Here we propose a new algorithm, which is consistent with the SSS 

statistics. This algorithm is based on standard deviations sk for timescales k ranging from 1 to 

a maximum value k΄ := n / 10. This maximum value was chosen so that sk can be estimated 

from at least 10 data values.  

 Combining (20) and (11) we get 

 E[Sk] ≈ ck(H) kH σ (26) 

where 

 ck(H) := 
n/k – (n/k) 2H – 1

n/k – 1  (27) 

Based on (26) we can estimate simultaneously H and σ in terms of minimising a fitting error. 

Among several expressions that were tried for this error, denoted e, the following has been 

proved (using Monte Carlo experiments) to be the most efficient (i.e., to have the narrowest 

confidence intervals)  

 e2(σ, H) := ∑
k = 1

k΄

 {ln E[Sk] – ln sk}2

k  = ∑
k = 1

k΄

 [ln σ + H ln k + ln ck(H) – ln sk]2

k  (28) 

 Taking the derivatives of e2 with respect to ln σ and H end equating to zero we get 

 
 1 
2  

∂e2(σ, H)
∂ ln σ  = ln σ ∑

k = 1

k΄

  1 
k  + H ∑

k = 1

k΄

 ln k
k  + ∑

k = 1

k΄

 ln ck(H)
k  – ∑

k = 1

k΄

 ln sk
k  = 0 (29) 
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 1 
2  

∂e2(σ, H)
∂H  = ln σ ∑

k = 1

k΄

 dk(H)
k  + H ∑

k = 1

k΄

 dk(H) ln k
k  + ∑

k = 1

k΄

 dk(H) ln ck(H)
k  – ∑

k = 1

k΄

 dk(H) ln sk
k  = 0 (30) 

where 

 dk(H) := ln k + 
∂ ln ck(H)

∂H  = ln k – 
(n/k) 2H – 1 ln(n/k)
(n/k – 1) ck(H)2  (31) 

 Eliminating ln σ we get 

 H = 
⎩
⎨
⎧ 

 
∑

k = 1

k΄

 dk(H) ln sk
k  ∑

k = 1

k΄

  1 
k  – ∑

k = 1

k΄

 dk(H) ln ck(H)
k  ∑

k = 1

k΄

  1 
k  – ∑

k = 1

k΄

 ln sk
k  ∑

k = 1

k΄

 dk(H)
k   

  + ∑
k = 1

k΄

 ln ck(H)
k  ∑

k = 1

k΄

 dk(H)
k ⎭

⎬
⎫ 

 /
 
 ⎩
⎨
⎧ 

 
∑

k = 1

k΄

 dk(H) ln k
k  ∑

k = 1

k΄

  1 
k  – ∑

k = 1

k΄

 ln k
k  ∑

k = 1

k΄

 dk(H)
k ⎭

⎬
⎫ 

 
 (32) 

In this equation H appears in both sides. However, it can be easily solved in an iterative 

manner. Assuming an initial value H = 0.5 and substituting it in the right-hand side we 

directly calculate (in the left-hand side) an improved estimate and we continue this way. The 

method converges quickly. Having found H, σ is obtained directly from (29). Alternatively, it 

can be estimated from (21) using the standard deviation of the finest time scale only. 

 To demonstrate the performance of the algorithm we have done a Monte Carlo experiment 

using the ensemble of 100 samples already discussed in section 3.2 with n = 50 and 100, 

generated for H = 0.80 and σ = 0.50. For comparison we also used similar series of white 

noise (H = 0.50). The resulting values of H and σ using the above algorithm are shown in 

Figure 5 by means of box plots. The figure shows a good performance of the algorithm, 

especially for n = 100, whereas for n = 50 and H = 0.8 a slight underestimation of both H and 

σ appears. For comparison we have also applied a much simpler algorithm, which is based on 

the classic estimator of σ (equation (17); see Montanari et al., [1997]; Koutsoyiannis 

[2001b]), which, as shown in Figure 5, apparently results in underestimation of both H and σ 

even for n = 100. Finally, another comparison is performed using the traditional Hurst’s 
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algorithm based on the rescaled range for the ensemble with n = 100 and H = 0.8. Clearly, 

Figure 5 shows that this algorithm is inappropriate. Its exhibits a negative bias, which is rather 

slight, but, more importantly, the dispersion of the results is more than double that of the 

proposed algorithm. Notably, in a non-ignorable percentage of samples, this algorithm 

resulted in H greater than 1, which is mathematically inconsistent, as well in H smaller than 

0.5, which is physically inconsistent (although mathematically acceptable). On the contrary, 

the proposed algorithm never resulted in H greater than 1; also, it never resulted in H smaller 

than 0.5 when the true H is 0.8. Some additional information on the behavior of the proposed 

algorithm is provided in Figure 6, where the estimated standard deviation is plotted against 

the estimated Hurst exponent. The figure indicates that for H < 0.8 the two statistics are 

practically uncorrelated but for higher H they become positively correlated. 

3.4 Estimation of distribution quantiles 

 The problem of estimation of quantiles of hydrologic variables, for certain values of 

probability of exceedance or non-exceedance, is central to hydrologic statistics. Clearly, the 

above analyses lead to dramatic differences of these quantiles in comparison with their classic 

estimations.  

 To demonstrate this we consider the case where the variable X is normally distributed. In 

this case the classic estimator of the u-quantile (the value of the variable for probability of 

non-exceedance u) is 

 X̂u = X– + zu S (33) 

where zu is the u-quantile of the standard normal distribution. Its classic confidence limits and 

for confidence coefficient γ are given by [e.g., Stedinger et al., 1993, p. 18.30] 

 x̂u1,2 = x̂u ± z(1 + γ /2) εu (34) 
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where 

 εu = 
s
n
 1 + 

z2
u

2 (35) 

For the SSS case, assuming a known H, the estimator of the u-quantile for any scale k 

becomes 

 Ẑ
(k)
u  = k X– + zu kH S~ (36) 

The confidence limits can be estimated using (16) and (23) and also assuming that, when X is 

normally distributed, X– and S~ are stochastically independent (as in the classic case), a fact 

verified by Monte Carlo simulations. After algebraic manipulations, these confidence limits 

become  

 ẑ
(k)
u1,2  = ẑ

(k)
u  ± z(1 + γ /2) εu (37) 

with 

 εu = k 
s

n1 – H 1 + 
z2

u

κ(H) nλ(H) (n / k)2 H – 2 (1 – n2 H – 2) (38) 

 To demonstrate the difference of the classic and SSS estimators we have plotted in Figure 

7 the 95% confidence limits of both cases using the first synthetic sample of the ensemble 

already described in section 3.2 for n = 100. We remind that the parameters used to generate 

this synthetic sample are H = 0.8, µ = 2 and σ = 0.5. This figure is for the basic timescale (k = 

1). We observe in Figure 7 that the point estimations of quantiles for u ranging from 0.01 to 

0.99 differ only slightly due to the small departure of the SSS standard deviation from the 

classic one. However, the confidence interval determined by the SSS estimator is 3 to 4 times 

wider than in that of the classic estimator. Interestingly, the true (theoretical) quantiles, which 

are also shown in Figure 7, lie outside of the 95% classic confidence limits for the entire 



23 

 

probability domain shown in the graph. On the contrary, it lies within the 95% SSS 

confidence limits, again for the entire probability domain. This demonstrates the 

inappropriateness of classic estimators and the appropriateness of the SSS ones.  

 When both the standard deviation and the Hurst exponent are unknown, apparently the 

confidence intervals will be even wider. Their theoretical determination, however is very 

difficult and therefore Monte Carlo methods [e.g. Ripley, 1987] must be the appropriate 

choice. 

3.5 Estimation of cross-covariances and cross-correlations 

 Assuming that two processes Xi and Yi are both SSS with common H and mutually 

correlated, the typical covariance estimator 

 SXY := 
1

n – 1 ∑
i = 1

n

 (Xi – X–)(Yi – Y–) (39) 

is again a biased estimator. Reasoning as above, and also assuming, by analogy to (11), that 

the aggregated covariance is  

 Cov[X1 + … + Xn, Y1 + … + Yn] = n2H Cov[X1, Y1] (40) 

we conclude that the unbiased estimator for any known H is 

 S~XY := 
n – 1

n – n2H – 1 SXY = 
1

n – n2H – 1 ∑
i = 1

n

 (Xi – X–)(Yi – Y–) (41) 

Here we observe that the correlation coefficient is 

 RXY := 
S XY

S X S Y

 = 
S~XY

S~X S~Y

 (42) 

Thus, the classic estimator of the (cross-) correlation coefficient remains valid also for SSS.  

 This is demonstrated in Figure 8. As in section 3.2, we performed here another Monte 

Carlo experiment by generating bivariate synthetic samples with common H = 0.8 and length 
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n = 100 or 50. The other characteristic parameters were µ = 2 and 3, and σ = 0.5 and 1.2 for 

the first and second variable, respectively. The theoretical cross-correlation coefficient was 

0.85. To generate the bivariate synthetic samples we followed the multivariate method by 

Koutsoyiannis [2000]. From the ensembles of 100 series we estimated the empirical cross-

correlations for all timescales, which, as shown in Figure 8, agree well with the theoretical 

expectation.  

3.6 Estimation of auto-covariances and auto-correlations 

 In the case of autocorrelation coefficients the situation is different as it has been shown that 

for series with nonzero autocorrelation, the typical estimator of autocovariance is biased 

downward [Wallis and O’Connell, 1972; Salas, 1993, p. 19.10]. The typical estimator of the 

lag l autocovariance is [e.g., Salas, 1993, p. 19.10] 

 Gl := 
1
n ∑

i = 1

n – l

 (Xi – X–)(Xi + l – X–) (43) 

This can be written as 

 Gl = 
1
n ∑

i = 1

n – l

 [(Xi – µ) – (X– – µ)] [(Xi + l – µ) – (X– – µ)] (44) 

After algebraic manipulations, also considering (13), we get 

 Gl = 
1
n ∑

i = 1

n – l

 (Xi – µ) (Xi + l – µ) – 
1
n (X– – µ) ∑

i = 1

n – l

 [(Xi – µ) + (Xi + l – µ)] + (X– – µ)2 (45) 

Assuming that l is small in comparison with n so that we can interchange n – l and n, and also 

extend the second sum of (45) over all i, we obtain 

 Gl ≈ 
1
n ∑

i = 1

n – l

 (Xi – µ) (Xi + l – µ) – (X– – µ)2 (46) 

Taking expected values (and again ignoring the difference of n – l and n), we find that  
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 E[Gl] ≈ γl – 
σ2

n2 – 2H (47) 

This means that an approximately unbiased estimator of γl will be 

 G~ l := Gl + 
1

n2 – 2H S~2 = Gk + 
n – 1

n3 – 2H – n S2 (48) 

Consequently, an approximately unbiased estimator of the autocorrelation coefficient ρk will 

be 

 R~l := 
G~ l

 S~2
 = Rl⎝⎜

⎛
⎠⎟
⎞1 – 

1
n2 – 2H  + 

1
n2 – 2H (49) 

where Rl is the classic estimator of the autocorrelation coefficient, i.e.,  

 Rl := 
n

n – 1 
Gk
S2  (50) 

 Clearly, the classic estimator of autocorrelation is biased and the bias becomes very high 

when H is high. This is demonstrated in Figure 9 by means of the Monte Carlo experiment 

already discussed in section 3.2. Not only is the classic estimation of autocorrelation 

coefficient significantly lower than the theoretical value but it also vanishes off (becomes 

practically zero) for lags 5-10 thus obscuring the long-term persistence of the process. This 

may have dramatic consequences as the process may be taken as a short-memory one and be 

modeled using typical ARMA models, which of course are inappropriate. On the contrary, the 

SSS estimator developed above captures very well the long-term persistence of the process 

and agrees perfectly with the theoretical autocorrelation function. 

4. Case studies 

 In this section we discuss further the three real-world time series that were introduced in 

section 2.1. In Figure 10 we have plotted the standard deviation of the Jones’s proxy time 

series of temperature anomalies versus timescale. Clearly, the standard deviation of the 
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aggregated process is a power function of timescale and this is apparent even using the classic 

estimator of standard deviation. The exclusion of the data of the last century, which can be 

suspect for anthropogenic influence, does not change the shape of the curve of standard 

deviation versus slope, as also shown in Figure 10. The slope of this curve in the log-log plot 

is high and differs significantly from 0.5, the value that characterizes white noise. Using the 

method described in section 3.3 we estimated the Hurst coefficient, which is the slope of this 

curve, at 0.92. Had the classic estimation of standard deviation been used, H would be 0.86, a 

value that corresponds to the mean slope of the classic standard deviation versus scale.  

 In the upper panel of Figure 11 we have plotted the lag-1 and lag-2 autocorrelation 

function versus scale. The SSS model implies that these autocorrelations are independent of 

scale (equation (12)). The classic empirical estimations of the autocorrelation do not verify 

this theoretical expectation as for large scales the autocorrelation decreases. However, the 

SSS estimations of autocorrelation agree well with the model, as they are almost constant 

even for scales as large as 50 years. In the lower panel of Figure 11 we have plotted the 

autocorrelation versus lag for the basic scale (k = 1). Due to the large length of the time series, 

the long-term persistence of the time series is obvious here even when the classic 

autocorrelation estimators are used. However, in this case the empirical autocorrelation depart 

from theoretical ones for lags > 40, even when the value H = 0.86 is used. When the SSS 

estimation of autocorrelation is used along with the value H = 0.92, the empirical 

autocorrelation function agrees perfectly with the model.  

 In Figure 12 we have plotted the point estimates and the 99% confidence limits of the 

quantiles of the temperature anomalies for probability of non-exceedance u ranging from 1% 

to 99%. This is done for two timescales, the basic time scale (k = 1) that represents the annual 

variation of temperature anomaly, and the 30-year time scale, which typically is assumed as 

sufficient to smooth out the annual variations and be a representative value of the climate. 

(For the latter we have used the averaged rather than aggregated time series, i.e., z(30)/30). We 
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observe in Figure 12 that the variation of the 30-year average, is only slightly lower than that 

of the annual values. For example, the 99%-quantile of annual temperature anomaly slightly 

exceeds 0.6oC above average, whereas the 99%-quantile of the thirty-year average is almost 

0.5oC above average. These values refer to the point estimations of quantiles. If we consider 

the upper 99% confidence limits of quantiles, these values become about 1.0oC and 0.9oC 

above average, respectively. These figures indicate that an increase of the thirty-year average 

temperature by 0.5oC, does not provide strong statistical evidence of an unusual change of 

climate. (We note that the observed temperature increase since 1850 is around 0.5oC). 

 The results related to this example, however, contain a high degree of uncertainty due to 

the proxy character of the time series. This problem however, does not emerge in our next 

example, the Paris temperature time series. In Figure 13 we have plotted the standard 

deviation of Paris temperature versus timescale. Again, the standard deviation of the 

aggregated process is a power function of timescale and this is apparent even using the classic 

estimator of standard deviation. The slope of this curve in the log-log plot, which represents 

the Hurst coefficient, estimated using the method described in section 3.3, is 0.81 (it would be 

0.79 if the classic estimation of standard deviation was used). The autocorrelation coefficients 

shown in Figure 14 also verify the presence of long-term persistence, the appropriateness of 

the proposed SSS estimator of autocorrelation, and the large departure of the classic 

estimations from SSS estimators. Otherwise, as shown in Figure 2, there is no remarkable 

pattern in this time series that would require further statistical analysis. 

 An interesting pattern exists in our third example time series, the Boeoticos Kifisos runoff, 

shown in Figure 3, which as already discussed in section 2.1, exhibits a falling trend since 

1920, lasting 78 out of a total of 91 years. The characteristic plot of standard deviation versus 

time scale, shown in Figure 15, again verifies the presence of long-term persistence. As in the 

previous examples, the relation of standard deviation versus scale is a power law; the 

exponent is 0.78.  
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 Typically, in hydrologic statistics a trend is detected using the Kendall’s τ statistic [e.g. 

Kottegoda, 1980, p. 32] defined as 

 τ := 
4 p

n (n – 1) – 1 (51) 

where p is the number pairs of observations (xj, xi; j > i) in which xj < xi. In a random series τ 

has mean 0, variance 2(2n + 5)/9n(n – 1), and distribution converging rapidly to normal. In 

our example, the application of the test results in τ = 0.40 for n = 78. The standard deviation 

of τ is 0.077, and eventually Kendall’s test results in rejection of the null hypothesis that a 

trend does not exist for an attained significance level as low as 8.8×10–8; this is typically 

considered as sufficient statistical evidence that a trend really exits. However, this is not 

correct because the time series is not random but an SSS series. To find the value of the 

standard deviation of τ we can now use stochastic simulation. Thus, we generated an 

ensemble of 100 time series with n = 78 and H = 0.78, from which we found that the standard 

deviation of τ is 0.173 and the attained significance level of the Kendall’s test becomes now 

0.01. Still, this is not absolutely correct because it does not correspond exactly to the 

formulation of the null and alternative hypotheses. We recall that, to formulate the hypotheses 

to be tested, we did an exploratory data analysis of the complete 91-year series and we located 

this trend to 78 out of the 91 years. On the other hand, it is known that the validity of the 

confirmatory tests is based on the assumption that the investigator developed the hypothesis 

prior to examining the data [Hirsch et al., 1993, p. 17.5]. To re-establish the validity of the 

test, we performed a different stochastic simulation that is consistent with the procedure of 

formulating the hypotheses. Specifically, we generated an ensemble of 100 time series, each 

with n = 91 and H = 0.78, and in each of these series we located that 78-year period which 

gave the maximum value of τ (in absolute value). Now the standard deviation of τ over the 

100 series is 0.252 and the attained significance level of the Kendall’s test is 0.055. This 

means that the trend is not statistically significant at the 1% or even the 5% significance level.  
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 The falling trend could be alternatively viewed as a downward jump. This jump, as shown 

in Figure 16, can be located between 1971 and 1972. The 65-year period before the jump has 

an average of 439.3 mm and the 26-year period after the jump has an average of 276.6 mm, 

whereas the entire 91-year average is 392.8 mm. In classic statistics, the difference 493.3 – 

276.6 = 162.7 mm would be tested for being statistically significant using the typical 

statistical test for equality of means. Indeed, this test results in rejection of the hypothesis of 

equality of the means at an attained significance level as low as 8.2×10–6. This typical test, 

however, is incorrect because it was based on the classic statistics. To perform a more 

accurate test we performed stochastic simulation. In each of the 100 generated 91-year long 

synthetic series already discussed in the previous paragraph we located the 26-year period 

with the minimum average and we took the difference from the average of the entire 91-year 

series. Then we determined the probability that this difference exceeds 392.8 – 276.6 = 116.2 

mm, which is as high as 22%. This probability is the attained significance level of the test and 

this means that the hypothesis of equality of means is not rejected at the usual significant 

levels.  

 In conclusion no statistically significant trend or jump is detected in the Boeoticos Kifisos 

runoff time series. The above statistical analysis defeats earlier analyses of the same time 

series [e.g. Nalbantis et al., 1993], which detected statistically significant trends or jumps 

using classic statistics.  

5. Summary and conclusions 

 Despite of the intensive research of the recent years on climate change, according to the 

experts of climate modeling, “the current state of affairs is not satisfactory” [Barnett et al., 

1999] in terms of prediction capabilities of the climate evolution and quantification of the 

related uncertainty. Moreover, the unpredictability of future climate in deterministic terms 

may by a structural characteristic of the climate system (rather than a matter of current 
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weaknesses of models) since, according to von Storch et al. [2001], “climate must be 

considered as a stochastic system, and our climate simulation models as random number 

generators”.  

 Therefore, probability-based, statistic or stochastic methods may be good alternatives to 

quantify uncertainty, even under a varying climate. However, hydrologic statistics, the branch 

of hydrology that deals with uncertainty, has been based on the implicit assumption of a stable 

climate. This disagrees with the fact that climate has ever, through the planet history, changed 

irregularly on all time scales, a fact that becomes obvious from long hydroclimatic time 

series. Observed shifts in such time series were often regarded as deterministic components 

(trends or jumps) and removed from the time series so that the residual can be processed using 

classic statistics. This, however, is not the correct way as the shifts are in fact stochastic rather 

than deterministic. A stochastic basis for dealing with these shifts is offered by the Hurst 

phenomenon, which, in fact, is no more than the simple scaling behavior of the variation of 

hydroclimatic quantities with scale. The Hurst coefficient is the exponent of the power-law 

relationship between the aggregated standard deviation at any timescale and the scale length.  

 When we employed the simple scaling hypothesis and revisited the typical statistical 

descriptors used in hydrologic statistics under this hypothesis we discovered that 

1. the classic sample average remains an unbiased estimator of the true mean, but its 

variance, which expresses the uncertainty of the its estimation, is dramatically higher 

than the value given by the classic statistics; 

2. the classic estimator of variance is no more unbiased and the variance thereof is 

different from that of the classic statistics; 

3. the quantiles of a given distribution function differ from those of the classic statistics 

and their confidence intervals are radically wider than those implied by the classic 

statistics; 
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4. the classic estimators of cross-correlations between two variables remain almost 

unbiased, but those of autocorrelations are highly biased. 

 For all above statistical descriptors, new generalized estimators are determined which are 

unbiased or almost unbiased under the simple scaling hypothesis. These estimators depend on 

the Hurst exponent H, in addition to the other dependencies used in classic statistics. The 

classic estimators are derived as special cases of the generalized estimators when H = 0.5. The 

Hurst exponent itself has been considered as another statistic and an algorithm has been 

developed to estimate it, avoiding the use of the concept of rescaled range.  

 The application of the developed statistical framework to three hydrometeorological time 

series with lengths ranging from 91 to 992 years showed that all three series agree perfectly 

with the scaling hypothesis (Hurst phenomenon). In addition, it is shown that several patterns 

within these times series would be regarded as evident trends or shifts if classic statistical 

tests were used, but using modified tests based on the scaling hypothesis it turns out that they 

are nothing more than regular behavior of the time series.  

 In conclusion, the analyses of this paper cast a warning that the classic hydrologic statistics 

describes only a portion of the natural uncertainty of hydroclimatic processes, because it is 

based on the implicit assumption of a stable climate and, in addition, its use may characterize 

a regular behavior of hydroclimatic processes as unusual phenomenon. Furthermore, the 

analyses show that it is feasible to adapt the classic hydrologic statistics so as to quantify the 

total uncertainty under a varying climate. Obviously, further and more detailed analyses of 

several related issues of hydrologic statistics, and investigations of a large number of data 

sets, are needed before a concrete base of methodologies, appropriate for different types of 

water resources problems, can be established. 
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Figure 1 Plot of the North Hemisphere temperature anomalies, reconstructed by Jones et al. 

[1998] using proxy data (up). For comparison we have also plotted (middle) a series of white 

noise with statistics equal to those of the original series and (down) a synthetic simple scaling 

series with statistics equal to those of the original series. 
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Figure 2 Plot of the time series of mean annual temperature at Paris/Le Bourget. 
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Figure 3 Plot of the time series of the equivalent runoff depth of the Boeotikos Kifisos river 

basin, Greece. 
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Figure 4 Comparison of theoretical and empirical standard deviation of the aggregated 

processes Z
(k)
i  versus timescale k (logarithmic plots) for a Monte Carlo experiment with 

theoretical H = 0.8 and σ = 0.5. 
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Figure 5 Box plots of the estimated Hurst coefficients (up) and standard deviations (down) 

from ensembles of synthetic series with theoretical H = 0.5 or 0.8 and σ = 0.5. Bars 

correspond to the median of 100 estimations (from 100 synthetic series), upper and lower 

edges of boxes correspond to the 75%- and 25%-quantiles, respectively, and whiskers 

correspond to the maximum and minimum estimated values. The first four boxes correspond 

to the proposed method (section 3.3), the fifth boxes correspond to estimates using classic 

statistics, and the sixth box in the upper panel corresponds to the estimation using the original 

Hurst’s algorithm based on the rescaled range.  



45 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1
Estimated Hurst coefficient, H E

E
st

im
at

ed
 s

ta
nd

ar
d 

de
vi

at
io

n,
 s

H = 0.8, n = 100
H = 0.8, n = 50
H = 0.5, n = 100
H = 0.5, n = 50

 

Figure 6 Estimated Hurst coefficients versus estimated standard deviations from the 

ensembles of synthetic series of the Monte Carlo experiment of Figure 5 and for the proposed 

estimation method (section 3.3). 
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Figure 7 Point estimates of quantiles at the basic timescale (k = 1) and 95% confidence limits 

thereof estimated from a synthetic time series with length n = 100 generated with theoretical 

parameters H = 0.8, µ = 2 and σ = 0.5.  
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Figure 8 Comparison of theoretical and empirical cross-correlation coefficients of a bivariate 

aggregated process Z
(k)
i  versus timescale k for a Monte Carlo experiment with theoretical 

Hurst coefficient 0.8 for both variates, standard deviations 0.5 and 1.2 for the first and second 

variate, respectively, and theoretical cross-correlation coefficient 0.85. 



48 

 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
Lag, l

A
ut

oc
or

re
la

tio
n,

 ρ
l,

 r l

Theoretical
Empirical SSS, n = 100
Empirical classic, n = 100
Empirical SSS, n = 50
Empirical classic, n = 50

 

Figure 9 Comparison of theoretical and empirical autocorrelation functions at the basic scale 

(k = 1) for a Monte Carlo experiment with theoretical H = 0.8 and σ = 0.5. 
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Figure 10 Standard deviation of the aggregated processes versus timescale (logarithmic plot) 

for the Jones’s time series of the North Hemisphere temperature anomalies. For comparison 

we have also plotted the theoretical curve of the white noise model. 
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Figure 11 Autocorrelation coefficients of the Jones’s time series of the North Hemisphere 

temperature anomalies: (up) lag 1 and lag 2 autocorrelations of the aggregated process versus 

timescale, k; (down) autocorrelation versus lag for the basic timescale, k = 1. 
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Figure 12 Point estimates of quantiles at the basic timescale (annual values, k = 1) and the 30-

year timescale (30-year averages, k = 30), and 99% confidence limits thereof for the Jones’s 

time series of the North Hemisphere temperature anomalies.  
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Figure 13 Standard deviation of the aggregated processes versus timescale (logarithmic plot) 

for the time series of mean annual temperature at Paris/Le Bourget. For comparison we have 

also plotted the theoretical curve of the white noise model. 
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Figure 14 Autocorrelation coefficients of the time series of mean annual temperature at 

Paris/Le Bourget: (up) lag 1 and lag 2 autocorrelations of the aggregated process versus 

timescale, k; (down) autocorrelation versus lag for the basic timescale, k = 1. 
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Figure 15 Standard deviation of the aggregated processes versus timescale (logarithmic plot) 

for the runoff time series of the Boeotikos Kifisos river basin. 
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Figure 16 Auxiliary sketch for testing the hypothesis of a jump at the runoff time series of the 

Boeotikos Kifisos river basin: plots of the original time series and the averages before and 

after the jump. 


