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Abstract. While the Clausius-Clapeyron equation is very important as it determines 

the saturation vapour pressure, in practice it is replaced by empirical, typically 

Magnus type, equations which are more accurate. It is shown that the reduced 

accuracy reflects an inconsistent assumption that the latent heat of vaporization is 

constant. Not only is this assumption unnecessary and excessive, but it is also 

contradictory to entropy maximization. Removing this assumption and using a pure 

entropy maximization framework we obtain a simple closed solution, which is both 

theoretically consistent and accurate. Our discussion and derivation are relevant to 

students and specialists in statistical thermophysics and in geophysical sciences, and 

our results are ready for practical application in physics as well as in such disciplines 

as hydrology, meteorology and climatology. 

Keywords: entropy, maximum entropy, saturation vapour pressure, Clausius-Clapeyron 

equation, Magnus equation. 

1. Introduction 

The Clausius–Clapeyron relationship characterizes the transition between two phases of matter. The 

importance of this equation cannot be overemphasized and transcends thermodynamics and physics. 

As it determines the saturation vapour pressure for water, it provides the physical basis of the 

hydrological cycle and becomes a principal equation in hydrology, meteorology, climatology, and 

other geophysical sciences. Specifically, the saturation vapour pressure, also known as equilibrium 

vapour pressure, is an upper limit of the quantity of vapour that the atmosphere can contain. When 

this limit is reached, no additional liquid water is evaporated, while below the limit more water 

evaporates. This limit is expressed in terms of the partial pressure of the vapour. At standard 

temperature and pressure (STP) conditions, i.e. at a temperature of 273.15 K (0°C) the saturation 

vapour pressure is 6.11 hPa, i.e. 0.611% of the total pressure of 1000 hPa. The saturation vapour 

pressure increases at higher temperatures, e.g. at 25°C it is over five times higher. Conversely, when 

moist air ascends and its temperature decreases, so does the saturation vapour pressure. Vapour in 

excess of the lower saturation pressure starts to condense, giving rise to the formation of clouds. 

 The Clausius-Clapeyron equation derives from entropy maximization, which determines the 

equilibrium between two phases of a substance. Mathematically it is expressed as the relationship 

between temperature, T, and pressure, p, at the equilibrium. Usually it is expressed in differential form 

[e.g. 1, 2; see also below]. However, in addition to the differential form, most texts [e.g. 3, p. 98; 4, p. 

180; 5, p. 612; 6, p. 300] as well as electronic sources, provide an analytical equation written as  

 p = CT1 







−

RT

L
exp  (1)  

where CT1 is an integration constant (generally, we use the symbol CTi to denote integration 

constants), L is the latent heat of vaporization and R is the specific gas constant. This is supposed to 

be the integration of the differential form under the assumption that L is constant. However, as will be 

shown, this assumption is inconsistent with the entropy maximization framework and, as a result, (1) 

is not an integration of the Clausius-Clapeyron equation.  
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 Furthermore, due to the inconsistent assumption, (1) is not accurate enough as an approximation to 

be used in practice. Therefore, more accurate empirical relationships are more often used to determine 

the saturation vapour pressure. The so-called Magnus-type equations are the most typical in 

application and the most recent version [7] for temperature range –40
o
 to 50

o
C is 

 p = 6.1094 exp 








+T

T

04.243

625.17
  [T in 

o
C, p in hPa] (2)  

 A theoretically consistent closed solution exists [8, p. 203; see also below] and is not much more 

complex than (1), but it is rarely mentioned (e.g. none of the above referenced books contains it). 

Even when it is mentioned, it is still presented along with (1), which may again be characterized as the 

best known approximation to calculate the liquid–vapour equilibrium pressure [9].  

 Here we demonstrate the inconsistency inherent in the assumptions that are made to derive (1) and 

we derive a theoretically consistent closed solution, which is in line with the aforementioned existing 

consistent solution, removing incorrect assumptions. We also determine its numerical constants for 

the phase change of water, thus providing an expression ready for use in practice, and we show that 

numerically its error with respect to standard reference data is negligible, smaller than that of (2) and 

spectacularly smaller than that of (1). In all this, the underpinning logic is that the principle of 

maximum entropy, which is a variational principle, is economic in assumptions needed: 

Mathematically, there is no limit to the number of unknowns that can be determined in a 

maximization problem (as compared to one formulated in terms of equations, where the number of 

unknowns should equal the number of equations). Thus, we should be able to determine any unknown 

quantity without assumptions.  

2. The inconsistency 

It is well known [e.g. 1, p. 143] that in two systems at equilibrium, entropy maximization constrained 

with the conditions that the total energy, volume and number of particles are constant, results, 

respectively, in temperature, T, pressure, p, and chemical potential, µ, that are equal in the two 

systems. In particular, the last equality is  

 µG = µL (3)  

where the subscripts G and L denote the gaseous and liquid phase, respectively. Classical and 

statistical thermodynamics texts do not use (3) directly; rather, they derive, as a consequence of (4), 

and use the equality of differentials [e.g. 2. p. 71], 

 dµG = dµL (4)  

 The entropies per unit mass sG and sL at the gaseous and liquid phase, respectively, are given as 

 sG = CT2 + cp ln T – R ln p (5)  

 sL = CT3 + cL ln T (6)  

where cp is the specific heat at constant pressure of the vapour and cL is the specific heat of the liquid. 

The liquid was regarded as incompressible and, for this reason, in (6) the entropy does not depend on 

pressure. The differentials of the chemical potentials are given by Gibbs-Duhem equations [e.g. 2] as  

 dµG = vG dp – sG dT (7)  

 dµL = – sL dT (8)  

where again in (8) we neglected the specific volume vL of the liquid phase. Combining (4), (7) and (8) 

we obtain  

 
T

p

d

d
 = 

Gv

ss LG −  (9)  

 If we express the entropy difference in terms of the latent heat as 
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 sG – sL = 
T

L
 (10)  

then we obtain the following typical form of the Clausius-Clapeyron equation, 

 
T

p

d

d
 = 

GTv

L
 (11) 

Furthermore, using the ideal gas law, pvG = RT, we obtain the expression  

 
T

p

d

d
 = 

2
RT

Lp
 (12) 

whose integration assuming constant L results in (1). 

 In fact, however, assuming a constant L renders the above derivation unnecessary. Indeed, we can 

express the difference of entropies from (5) and (6) as 

 sG – sL = (CT2 – CT3) + (cp – cL) ln T – R ln p (13)  

Substituting into (10) and solving for p we readily obtain 

 p = CT4 
RccpT

RT

L /)( Lexp
−









−  (14)  

where CT4 := exp[(CT2 – CT3)/R]. Equations (1) and (14) describe the same relationship of p and T, 

and were derived by precisely the same assumptions. However they are clearly inconsistent, which 

implies that at least one of the assumptions made is excessive and incorrect. 

3. Alternative derivation using classical thermodynamics 

In this section we will remove the assumption for constant L. We express the difference of entropies 

in (13) as an unknown function g(T, p) := sG – sL and we write (13) in differential form as 

  (cp – cL) 
T

Td
– R 

p

pd
 = dg (15)  

Using the law of ideal gases to eliminate vG from (9), we obtain 

 
T

p

d

d
 = 

RT

p
 (sG – sL) = 

RT

pg
 (16)  

Solving (16) for dp/p and substituting it in (15) we obtain 

  (cp – cL) 
T

Td
 – g

T

Td
= dg (17)  

which can be written as  

 (cp – cL) dT = d(Tg) (18)  

and can be readily solved to give  

 g = sG – sL = 
T

α
 – (cL– cp) (19)  

where α is an integration constant. Comparing (19) with (10), we conclude that L appears to be a 

linear function of temperature, rather than a constant: 

 L = α – (cL– cp)T (20)  

 Now, substituting g from (19) to (16) we obtain 

 
T

p

d

d
 = 

RT

p
(cp – cL) + 

2
RT

pα
 (21)  
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This is readily solved to give 

 p = CT5 
RccpT

RT

α /)( Lexp
−









−  (22)  

Comparing (21) with the earlier results, we observe that it is functionally equivalent with (14) (both 

include a multiplicative factor that is a power function of T) whereas (1) proves to have an 

inappropriate functional form.  

 To eliminate CT5 from (22) we assume a known saturation vapour pressure p0 at a specific 

temperature T0. We can then write (22) as 

 p = p0 















−

T

T

RT

α 0

0

1exp

Rcc p

T

T
/)(

0
L −









 (23)  

which is our final closed solution of the Clausius-Clapeyron equation. 

4. Alternative derivation in a statistical mechanical framework  

In this section we derive the phase transition equation in a purely statistical mechanical framework 

totally avoiding the assumptions about the equality of chemical potentials and temperatures; rather we 

will derive them by entropy maximization. For this maximization we assume that our system contains 

a total of N particles, NG of which in the gaseous phase and NL in the liquid phase, so that 

 NG + NL = N (24) 

 If S denotes the total extensive entropy, and SG and SL denote the extensive entropy in the gaseous 

and liquid phase, respectively, then,  

 S = SG + SL = NG s
*
G + Nl s

*
L (25) 

where s*
G and s*

L denote entropies per particle. From generalized Sackur-Tetrode equations [e.g. 2] we 

have 

 s*
G/k = CT6 + (cv/R) ln (EG/NG) + ln (V/NG),   s*

L/k = CT7 + (cL/R) ln (EL/NL)  (26) 

where again we neglected the volume per particle in the liquid phase, which is by several orders of 

magnitude smaller than that of the gaseous phase. In (26) k is Boltzmann’s constant and cv is the 

specific heat at constant volume of the vapour. We recall that cv = cp – R and that the quantity 2cv/R 

represents the degrees of freedom available to the molecular (thermal) motion. In addition, EG and EL 

in (26) are the thermal energies in the two phases. If E is the total energy, then conservation of energy 

demands 

 EG + EL + NG ξ = E (27) 

where ξ is the amount of energy per molecule required to break the bonds between molecules of the 

liquid phase in order for the molecule to move to the gaseous phase, which we assume constant. 

 We wish to find the conditions which maximize the entropy S in (25) under constraints (24) and 

(27) with unknowns EG, EL, NG, NL. We form the function Ψ incorporating the total entropy S as well 

as the two constraints with Langrage multipliers κ and λ: 

 Ψ = (SG + SL)/k + κ (EG + EL + NG ξ – E) + λ (NG + NL – N) (28) 

To maximize Ψ, we first take the derivatives with respect to EG and EL and equate them to 0 to obtain 

 
GΕ

Ψ

∂

∂
 =

k

1
 

G

G

Ε

S

∂

∂
 + κ = 0,  

LΕ

Ψ

∂

∂
 = 

k

1
 

L

L

Ε

S

∂

∂
 + κ = 0 (29) 

We recall that in statistical thermodynamics the temperature is defined as 

 
T

1
 := 

Ε

S

∂

∂
  (30) 
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Thus, (29) results in  

 κ = – 
G

1

kT
 = – 

L

1

kT
= – 

kT

1
 (31) 

In other words, it was proved that the temperatures in the two phases are equal.  

 Furthermore, taking the derivatives of Ψ with respect to NG and NL, and equating them to 0 we 

obtain 

 
GN

Ψ

∂

∂
 = 

k

s*
G  – 

R

cv  – 1 + κξ + λ = 0,  
LN

Ψ

∂

∂
 = 

k

s*
L  – 

R

cL  + λ = 0 (32) 

Eliminating λ, substituting κ from (31) and cv from cv = cp – R, and making algebraic manipulations, 

we find: 

 
k

ss *
L

*
G −  = 

kT

ξ
 – 

R

cc p−L
 (33) 

On the other hand, from (26), observing that EG/NG and EL/NL are both proportional to T, while V/NG 

is proportional to T/p, we also obtain the difference of entropies per particle as: 

 
k

ss *
L

*
G −

 = CT8 – 
R

cc p−L
 ln T – ln p  (34) 

Combining (33) and (34), eliminating s*
G – s*

L, and solving for p we find  

 ln p = CT9 – 
kT

ξ
 – 

R

cc p−L
 ln T (35) 

Now if we introduce α = ξR/k (= ξNa, where Na is the Avogadro constant) and take antilogarithms, 

then we obtain (22) again, which was our desideratum.  

 To finish this analysis, we will show the equality of chemical potentials (although the chemical 

potential was not involved at all in the above proof). We recall that the chemical potential is by 

definition: 

 – 
T

µ
 := 

N

S

∂

∂
 = s

* 
+ N

N

s

∂

∂ *

 (36) 

where the partial derivative applies for constant internal energy. Applying this definition in the two 

phases and using (26) we find,  

 –
T

µG  = s*
G – 

R

kcv  – k ,  – 
T

µL  = s*
L – 

R

kcL  + 
ξ

Τ
 (37) 

where the last term (ξ/T) in the second equation represents the conversion from constant thermal 

energy EL to constant internal energy UL = EL – NLξ. Specifically, this term represents the quantity  

(∂SL/∂EL)(∂EL/∂NL) = (1/T) ξ. This gives the difference of chemical potentials as  

 
T

µµ GL −  = s*
G – s*

L + 
R

cck p )( L −
 – 

ξ

Τ
 (38) 

Combining (33) and (38) we find 

 µL – µG = 0  (39) 

5. Application to water vapour 

We choose as reference point the triple point of water, for which it is known with accuracy that T0 = 

273.16 K (= 0.01oC) and p0 = 6.11657 hPa [10]. The specific gas constant of water vapour is R = 

461.5 J kg–1 K–1. The specific heat of water vapour at constant pressure, again determined at the triple 
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point, is cp = 1884.4 J kg–1 K–1 and that of liquid water is cL = 4219.9 J kg–1 K–1 [10], so that cL– cp = 

2335.5 J kg–1 K–1 and (cL – cp)/R = 5.06.  

 The latent heat at T0 is L0 = 2.501 × 106 J kg–1 so that α = L0 + (cL – cp)T0 = 3.139 × 106 J kg–1 and 

ξ / kT0 = α / RT0 = 24.9. According to (20), this results in the functional form 

 L [J kg–1] = α – (cL– cp)T = 3.139 × 106 – 2336 T [K] (40)  

It can be readily verified that this is very close to a commonly suggested (e.g. [11]) empirical linear 

equation for latent heat, i.e.,  

 L [J kg–1] = 3.146 × 106 – 2361 T [K] ( = 2.501 × 106 – 2361 TC [oC]) (41) 

Figure 1 provides a graphical comparison of equation (40) with (41), as well as with tabulated data 

from Smithsonian Meteorological Tables [12], which agree with the equations. Furthermore, it is 

important to know that the entropic framework which gives the saturation vapour pressure is the same 

framework that predicts the relationship of the latent heat of vaporization with temperature. 
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Figure 1. Comparison of latent heat of water as given by equation (40) proposed in this 

study with the empirical equation (41) and with standard tabulated data from ref. [12].  

Now, according to (23), the saturation vapour pressure will be  

 p = p0 















−

T

T01921.24exp

06.5

0 








T

T
, with T0 = 273.16 K, p0 = 6.11657 hPa. (42) 

where we have slightly modified the last two decimal digits of the constant α / RT0 to optimize its fit 

to the data (see below). For comparison, the inconsistent version (1) for constant L = L0 is 

 p = p0 















−

T

T0184.19exp , with T0 = 273.16 K, p0 = 6.11657 hPa. (43)  

  Equations (42) and (43), if plotted on a p vs. T graph, seem indistinguishable from each other as 

well as from the Magnus-type equation (2) (Figure 2). However, because p ranges at several orders of 

magnitude, the plot of Figure 2 is misleadingly hiding the differences between the different equations. 

The maximum relative difference of the proposed equation (42) with respect to (43) exceeds 7%, 

while that with respect to (2) is much lower, 0.29%. It is thus more informative to compare the three 

equations in terms of relative differences and also to compare them to data rather than to intercompare 

to each other.  
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Figure 2. Comparison of saturation vapour pressure obtained by the proposed equation 

(42), by the Magnus-type equation (2) from ref. [7], and by the standard but inconsistent 

equation (43) for constant L. 
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Figure 3. Comparison of relative differences of the saturation vapour pressure obtained 

by the proposed equation (42), as well as by the standard but inconsistent equation (43), 

with data of different origins (see text). 
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Table 1 Maximum values of the relative differences from data of the saturation vapour 

pressure obtained by three different equations (see text). 

 Standard (inconsistent) 

equation (43) 

Magnus-type 

equation (2) 

Proposed 

equation (42)  

Difference from IAPWS data 6.8% 0.27% 0.07% 

Difference from all data 7.6% 0.39% 0.15% 

 

 For the comparisons four reference data sets have been used, which are given in tabulated form 

from different origins: (a) the International Association for the Properties of Water and Steam 

(IAPWS), (b) the Smithsonian Meteorological Tables (Smiths.), (c) the World Meteorological 

Organization (WMO) meteorological tables, and (d) the American Society of Heating, Refrigerating 

and Air-conditioning Engineers (ASHRAE). The temperature domain of the comparison extends from 

–40o to 50oC, that is the typical range used in hydrometeorological applications. The data set (a), 

taken from ref. [10], contains values of saturation vapour pressure for temperatures higher than the 

water triple point (273.16 K). The other three data sets, all taken from ref. [13], contain values also 

below triple point; such temperatures prevail in the upper air and the saturation vapour pressure in 

such temperatures is necessary in order to estimate the relative humidity of the atmosphere. It is 

clarified that the values for T < 0oC are for water vapour over a surface of liquid water (not over ice), 

and thus are relevant to our study. Nonetheless, it is reasonable to expect that the values for T ≥ 0oC 

are more accurate and that the IAPWS data set, which is newer, is the most accurate among the four. 

The different data sets display small differences between each other for the same temperature value, 

up to 0.16%. 

 Figure 3 provides a graphical comparison of equations (42) and (43) with the reference data. 

Clearly, the common inconsistent equation (43), derived for constant L, proves to be inappropriate, as 

its relative error exceeds 7%. In contrast, the derived closed solution (42) has negligible relative 

errors. The maximum relative errors of the two equations, as well as those of the Magnus-type 

equation (2), with respect to the data are given in Table 1. It can be seen that the differences of the 

proposed equation (42) from the data is negligible, smaller that the deviations among the values of 

different data sets. The error of Magnus-type equation (2) is four times larger than that of (42) for the 

most accurate IAPWS data set and 2.5 times larger for all data sets. The error of the standard equation 

(43) is too high, 1.5-2 orders of magnitude higher that that of the proposed equation (42).  

 The simplicity of (42) makes numerical calculations easy. For known T, (42) provides p directly. 

The inverse problem (to calculate T, i.e. the saturation temperature, also known as dew point, for a 

given partial vapour pressure p) cannot be solved algebraically. However, the Newton-Raphson 

numerical method at an origin T0/T = 1 gives a first approximation T΄ of temperature by 

 
T

T

′
0  = 1 + 

06.5921.24

1

− 








p

p0ln  (44) 

Notably, this is virtually equivalent to solving (43) for T0/T. This first approximation can be improved 

by re-applying (42) solved for the term T0/T contained within the exponentiation, to give 

 
T

T0  = 1 + 
921.24

1









p

p0ln  + 
921.24

06.5









′T

T0ln  (45) 

A systematic numerical investigation showed that a single application of (45) suffices to provide a 

value of T with a numerical error in T0/T less than 0.1%, while a second iteration (setting the 

calculated T as T΄) reduces the error to 0.02%.  

6. Summary and concluding remarks 

Evidently, theoretically consistent relationships are preferable over purely empirical ones as far as the 

former agree with empirical evidence and their use is convenient. The Clausius-Clapeyron equation is 

a nice theoretical relationship, but the analytical solution typically contained in books, while it is 
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simple and easy to use, proves to be flawed and also a bad approximation of reality. It is, thus, 

reasonable that in calculations of saturation vapour pressure, empirical, typically Magnus-type, 

equations are preferred over this theoretical equation. By removing an unnecessary, excessive and 

inconsistent assumption that is made within the common derivation, we obtain a closed solution that 

is still very simple and combines both theoretical consistency and accuracy. With reference to water 

vapour saturation, the proposed solution is by orders of magnitude more accurate than the standard 

equation of the literature and also better than the more accurate Magnus-type equation. Compared to 

standard tabulated data of saturation vapour pressure for temperature range –40o to 50oC, which is 

relevant to hydrometeorological applications, the derived equation has negligible error. These facts 

may allow recommending the use of the derived equation (42) as one combining theoretical 

consistency and accuracy. 

 The alternative theoretical framework proposed, which is based on entropy maximization avoiding 

unnecessary assumptions, provides a better understanding and intuition development for the phase 

transition. Such understating and intuition development can help to recognize, particularly within the 

university education, the power of variational principles and the extremization (maximiza-

tion/minimization) approach over the more common approach that the physical laws are 

mathematically expressed only by equations, as well as to recognize the fundamental character of 

entropy maximization as a powerful physical principle, contrary to a common perception that physical 

laws are only deterministic and mechanistic.   

 As first indicated by Boltzmann and Gibbs, later succeeded by Shannon who used essentially the 

same entropy definition to describe the information content, entropy is none other than a measure of 

uncertainty [e.g. 14 , 15 , 16 ]. Thus, the interpretation of the framework proposed is that the 

quantification of the phase change relies on maximization of uncertainty. In particular, the entropy in 

equations (25) and (26) represents the combined uncertainty as to (a) whether a molecule is in the 

liquid or gaseous phase, (b) the molecule’s position in space and (c) the molecule’s kinetic state 

expressed by its velocity. This combined uncertainty is maximal at the microscopic (molecular) level. 

It is amazing that the entropy maximization represents a principle so powerful as to fully explain and 

accurately quantify the phase transition determining its latent heat (equations (20) and (40)) and the 

resulting equilibrium vapour pressure (equations (23) and (42)). It is even more amazing that, while at 

the microscopic level the uncertainty is maximized, at the macroscopic level all the resulting laws 

express near certainties, verified by measurements. This is not a surprise, though, because, given the 

probabilistic meaning of entropy, the negligible macroscopic uncertainty can be predicted by 

application of probability theory for systems with large number of elements, as the typical 

thermodynamic systems are.   
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