E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, Water, 10 (2), 194, doi:10.3390/w10020194, 2018.
[doc_id=1772]
[English]
In this paper, a new methodology for delineating Hydrological Response Units (HRUs), based on the Curve Number (CN) concept, is presented. Initially, a semi-automatic procedure in a GIS environment is used to produce basin maps of distributed CN values as the product of the three classified layers, soil permeability, land use/land cover characteristics and drainage capacity. The map of CN values is used in the context of model parameterization, in order to identify the essential number and spatial extent of HRUs and, consequently, the number of control variables of the calibration problem. The new approach aims at reducing the subjectivity introduced by the definition of HRUs and providing parsimonious modelling schemes. In particular, the CN-based parameterization (1) allows the user to assign as many parameters as can be supported by the available hydrological information, (2) associates the model parameters with anticipated basin responses, as quantified in terms of CN classes across HRUs, and (3) reduces the effort for model calibration, simultaneously ensuring good predictive capacity. The advantages of the proposed approach are demonstrated in the hydrological simulation of the Nedontas River Basin, Greece, where parameterizations of different complexities are employed in a recently improved version of the HYDROGEIOS model. A modelling experiment with a varying number of HRUs, where the parameter estimation problem was handled through automatic optimization, showed that the parameterization with three HRUs, i.e., equal to the number of flow records, ensured the optimal performance. Similarly, tests with alternative HRU configurations confirmed that the optimal scores, both in calibration and validation, were achieved by the CN-based approach, also resulting in parameters values across the HRUs that were in agreement with their physical interpretation.
Full text:
See also: http://www.mdpi.com/2073-4441/10/2/194
Our works referenced by this work:
1. | A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002. |
2. | K. Mazi, A. D. Koussis, P. J. Restrepo, and D. Koutsoyiannis, A groundwater-based, objective-heuristic parameter optimisation method for a precipitation-runoff model and its application to a semi-arid basin, Journal of Hydrology, 290, 243–258, 2004. |
3. | E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004. |
4. | E. Rozos, and D. Koutsoyiannis, A multicell karstic aquifer model with alternative flow equations, Journal of Hydrology, 325 (1-4), 340–355, 2006. |
5. | D. Koutsoyiannis, A. Andreadakis, R. Mavrodimou, A. Christofides, N. Mamassis, A. Efstratiadis, A. Koukouvinos, G. Karavokiros, S. Kozanis, D. Mamais, and K. Noutsopoulos, National Programme for the Management and Protection of Water Resources, Support on the compilation of the national programme for water resources management and preservation, 748 pages, doi:10.13140/RG.2.2.25384.62727, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, February 2008. |
6. | A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008. |
7. | A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, doi:10.1080/02626660903526292, 2010. |
8. | I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011. |
9. | A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013. |
10. | A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013. |
11. | J. A. P. Pollacco, B. P. Mohanty, and A. Efstratiadis, Weighted objective function selector algorithm for parameter estimation of SVAT models with remote sensing data, Water Resources Research, 49 (10), 6959–6978, doi:10.1002/wrcr.20554, 2013. |
12. | A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014. |
13. | A. Efstratiadis, A. Koukouvinos, P. Dimitriadis, E. Rozos, and A. D. Koussis, Theoretical documentation of hydrological-hydraulic simulation model, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 108 pages, September 2014. |
14. | A. Efstratiadis, A. Koukouvinos, E. Michailidi, E. Galiouna, K. Tzouka, A. D. Koussis, N. Mamassis, and D. Koutsoyiannis, Description of regional approaches for the estimation of characteristic hydrological quantities, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 146 pages, September 2014. |
15. | I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016. |
16. | A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017. |
Our works that reference this work:
1. | K. Risva, D. Nikolopoulos, and A. Efstratiadis, Development of a distributed hydrological software application employing novel velocity-based techniques, 11th World Congress on Water Resources and Environment “Managing Water Resources for a Sustainable Future”, Madrid, European Water Resources Association, 2019. |
2. | N. Mamassis, K. Mazi, E. Dimitriou, D. Kalogeras, N. Malamos, S. Lykoudis, A. Koukouvinos, I. L. Tsirogiannis, I. Papageorgaki, A. Papadopoulos, Y. Panagopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. Vitantzakis, N. Kappos, D. Katsanos, B. Psiloglou, E. Rozos, T. Kopania, I. Koletsis, and A. D. Koussis, OpenHi.net: A synergistically built, national-scale infrastructure for monitoring the surface waters of Greece, Water, 13 (19), 2779, doi:10.3390/w13192779, 2021. |
3. | P. Dimas, G.-K. Sakki, P. Kossieris, I. Tsoukalas, A. Efstratiadis, C. Makropoulos, N. Mamassis, and K. Pipili, Establishing a strategic blueprint for the design and evaluation of flood control infrastructure in extensive watersheds, Water Resources Management, 2025. |
Other works that reference this work (this list might be obsolete):
1. | Aqnouy, M., J. E. S. El Messari, H. Ismail, A. Bouadila, J. G. M. Navarro, B. Loubna, and M. R. A. Mansour, Assessment of the SWAT model and the parameters affecting the flow simulation in the watershed of Oued Laou (Northern Morocco), Journal of Ecological Engineering, 20(4), 104-113, doi:10.12911/22998993/102794, 2019. |
2. | Day, C., and G. Seay, Watershed surface characteristics and storm distribution impacts on low-order urban stream hydrology response, The Geographical Bulletin – Gamma Theta Upsilon, 60(2), 95-107, 2019. |
3. | Rozos, E., A methodology for simple and fast streamflow modelling, Hydrological Sciences Journal, 65(7), 1084-1095, doi:10.1080/02626667.2020.1728475, 2020. |
4. | Pobletei, D., J Arévaloi, O. Nicolis, and F. Figueroa, Optimization of the Hydrologic Response Units (HRU) using gridded meteorological data and spatially varying parameters, Earth and Space Science Open Archive, doi:10.1002/essoar.10502299.1, 2020. |
5. | Weber, M., M. Feigl, K. Schulz, and M. Bernhardt, On the ability of LIDAR snow depth measurements to determine or evaluate the HRU discretization in a land surface model, Hydrology, 7(2), 20, doi:10.3390/hydrology7020020, 2020. |
6. | Στεφανίδης, Σ. Ντάφης, και Χ. Γιάνναρος, Υδρολογική απόκριση της λεκάνης απορροής του χειμάρρου «Μπασδέκη» Ολυμπιάδας στην καταιγίδα της 25ης Νοεμβρίου 2019, Υδροτεχνικά (2019-2020), 29, 13-26, 2020. |
7. | Soulis, K. X., E. Psomiadis, P. Londra, and D. Skuras, A new model-based approach for the evaluation of the net contribution of the European Union rural development program to the reduction of water abstractions in agriculture, Sustainability, 12(17), 7137, doi:10.3390/su12177137, 2020. |
8. | Harisuseno, D., M. Bisri, and T.S. Haji, Inundation controlling practice in urban area: Case study in residential area of Malang, Indonesia, Journal of Water and Land Development, 46(VII–IX), 112–120, doi:10.24425/jwld.2020.134203, 2020. |
9. | Nagel, G. W., F. Da Silva Terra, J. S. De Oliveira, I. Horák-Terra, and S. Beskow, Cálculo da curva número para bacia hidrográfica urbana utilizando diferentes abordagens de classificação para imagem orbital RapidEye: estudo de caso para o arroio Pepino (Pelotas, RS), Pesquisas em Geociências, 47(2), doi:10.22456/1807-9806.108583, 2020. |
10. | Poblete, D., J. Arevalo, O. Nicolis, O., and F. Figueroa, Optimization of Hydrologic Response Units (HRUs) using gridded meteorological data and spatially varying parameters, Water, 12(12), 3558, doi:10.3390/w12123558, 2020. |
11. | Ramadan, A. N. A., D. Nurmayadi, A. Sadili, R. R. Solihin, and Z. Sumardi, Pataruman watershed Curve Number determination study based on Indonesia land map unit, Media Komunikasi Teknik Sipil, 26(2), 258-266, doi:10.14710/mkts.v26i2.26563, 2020. |
12. | Athira, P., and K. P. Sudheer, Calibration of distributed hydrological models considering the heterogeneity of the parameters across the basin: a case study of SWAT model, Environmental Earth Sciences, 80, 131, doi:10.1007/s12665-021-09434-8, 2021. |
13. | Assaye, H., J. Nyssen, J. Poesen, H. Lemma, D. T. Meshesha, A. Wassie, E. Adgo, and A. Frank, Curve number calibration for measuring impacts of land management in sub-humid Ethiopia, Journal of Hydrology: Regional Studies, 35, 100819, doi:10.1016/j.ejrh.2021.100819, 2021. |
14. | Gunn, K. M., A. R. Buda, H. E. Gall, R. Cibin, C. D. Kennedy, and T. L. Veith, Integrating daily CO2 concentrations in SWAT-VSA to examine climate change impacts on hydrology in a karst watershed, Transactions of the ASABE, 64(4), 1303-1318, doi:10.13031/trans.13711, 2021. |
15. | #Soulis, K., Hydrological data sources and analysis for the determination of environmental water requirements in mountainous areas, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 2, 51-98, Elsevier, doi: 10.1016/B978-0-12-819342-6.00007-5, 2021. |
16. | #Muñoz-Mas, R., and P. Vezza, Quantification of environmental water requirements; how far can we go?, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 6, 235-280, Elsevier, doi:10.1016/B978-0-12-819342-6.00001-4, 2021. |
17. | Azizah, C., H. Pawitan, B. D. Dasanto, I. Ridwansyah, and M. Taufik, Risk assessment of flash flood potential in the humid tropics Indonesia: a case study in Tamiang River basin, International Journal of Hydrology Science and Technology, 13(1), 57-73, 2022. |
18. | Anurogo, W., K. Pratiwi, M. Z. Lubis, M. K. Mufida, L. R. Sari, and S. N. Chayati, Analysis on the change of runoff curve number influence to surface flow debit using ALOS AVNIR-2 data imagery, Jurnal Pendidikan Geografi: Kajian, Teori, dan Praktek dalam Bidang Pendidikan dan Ilmu Geografi, 27(1), 15-25, doi:10.17977/um017v27i12022p15-25, 2022. |
19. | Lee, H., J.-Y. Park, and Y. S. Park, Developing and applying a QGIS-based model that accounts for nonpoint source pollution due to domestic animals, Water, 14(17), 2742, doi:10.3390/w14172742, 2022. |
20. | Gavhane, K. P., A. K. Mishra, A. Sarangi, D. K. Singh, and S. Sudhishri, Estimation of surface runoff potential of an ungauged watershed in semi-arid region using geospatial techniques, Arabian Journal of Geosciences, 16, 402, doi:10.1007/s12517-023-11497-9, 2023. |
21. | Hendrayantoa, W., and Y. Suharnoto, Simulation of the impact of land use change on surface run-off in karst Leang Lonrong sub-watershed, Journal of Natural Resources and Environmental Management, 13(2), 313-326, doi:10.29244/jpsl.13.2.313-326, 2023. |
22. | Patel, A., and S. M. Yadav, Development of flood forecasting and warning system using hybrid approach of ensemble and hydrological model for Dharoi Dam, Water Practice and Technology, 18(11), 2862-2883, doi:10.2166/wpt.2023.178, 2023. |
23. | Bitew, M. M., and H. H. Kebede, Effect of land use land cover change on stream flow in Azuari watershed of the Upper Blue Nile Basin, Ethiopia, Sustainable Water Resources Management, 10, 112, doi:10.1007/s40899-024-01084-5, 2024. |
24. | Stefanidis, S., N. Proutsos, V. Alexandridis, and G. Mallinis, Ecosystem services supply from peri-urban watersheds in Greece: Soil conservation and water retention, Land, 13(6), 765, doi:10.3390/land13060765, 2024. |
25. | Muchtar, A., W. Wahyullah, H. Herawaty, U. Arsyad, and A. F. Fathurrahman, Estimasi limpasan permukaan dengan menggunakan metode CN modifikasi di sub DAS mamasa, Jurnal Ilmu Lingkungan, 22(4), 1001-1008, doi:10.14710/jil.22.4.1001-1008, 2024. |
26. | #Chrysafis, I., K. Vatitsi, I. P. Kokkoris, P. Dimopoulos, T. Roustanis, E. Chalkidou, and G. Mallinis, Mapping ecosystem services trade-offs and synergies at Natura 2000 sites: a case study from Greece, Proceedings of Tenth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2024), A. Christofe, S. Michaelides, D. Hadjimitsis, C. Danezis, K. Themistocleous, N. Kyriakides, and G. Schreier (editors), Vol. 13212, 1321213, doi:10.1117/12.3037295, 2024. |
27. | Kumar, G. P., K. S. Sreejith, and G. S. Dwarakish, The influence of land use and land cover transitions on hydrology in a tropical river basin of Southwest India, Water Conservation Science and Engineering, 9, 64, doi:10.1007/s41101-024-00301-8, 2024. |
28. | Sreejith, K. S., G. P. Kumar, and G. S. Dwarakish, A critical review of the Soil Conservation Services – Curve Number method in hydrological modelling, Wetlands, 44, 117, doi:10.1007/s13157-024-01873-w, 2024. |
Tagged under: Hydrological models, Most recent works, Papers initially rejected, Software